1-2hit |
Keiichi MIZUTANI Takeshi MATSUMURA Hiroshi HARADA
A variety of all-new systems such as a massive machine type communication (mMTC) system will be supported in 5G and beyond. Although each mMTC device occupies quite narrow bandwidth, the massive number of devices expected will generate a vast array of traffic and consume enormous spectrum resources. Therefore, it is necessary to proactively gather up and exploit fractional spectrum resources including guard bands that are secured but unused by the existing Long Term Evolution (LTE) systems. The guard band is originally secured as a margin for high out-of-band emission (OOBE) caused by the discontinuity between successive symbols in the cyclic prefix-based orthogonal frequency division multiplexing (CP-OFDM), and new-waveforms enabling high OOBE suppression have been widely researched to efficiently allocate narrowband communication to the frequency gap. Time-domain windowing is a well-known signal processing technique for reducing OOBE with low complexity and a universal time-domain windowed OFDM (UTW-OFDM) with a long transition duration exceeding the CP length has demonstrated its ability in WLAN-based systems. In this paper, we apply UTW-OFDM to the LTE downlink system and comprehensively evaluate its performance under the channel models defined by 3GPP. Specifically, we evaluate OOBE reduction and block error rate (BLER) by computer simulation and clarify how far OOBE can be reduced without degrading communication quality. Furthermore, we estimate the implementation complexity of the proposed UTW-OFDM, the conventional CP-OFDM, and the universal filtered-OFDM (UF-OFDM) by calculating the number of required multiplications. These evaluation and estimation results demonstrate that the proposed UTW-OFDM is a practical new-waveform applicable to the 5G and beyond.
Keiichi MIZUTANI Zhou LAN Hiroshi HARADA
This paper proposes out-of-band emission reduction schemes for IEEE 802.11af based Wireless Local Area Network (WLAN) systems operating in TV White Spaces (TVWS). IEEE 802.11af adopts Orthogonal Frequency Division Multiplexing (OFDM) to exploit the TVWS spectrum effectively. The combination of the OFDM and TVWS may be able to solve the problem of frequency depletion. However the TVWS transmitter must satisfy a strict transmission spectrum mask and reduce out-of-band emission to protect the primary users. The digital convolution filter is one way of reducing the out-of-band emission. Unfortunately, implementing a strict mask needs a large number of filter taps, which causes high implementation complexity. Time-domain windowing is another effective approach. This scheme reduces out-of-band emission with low complexity but at the price of shortening the effective guard interval. This paper proposes a mechanism that jointly uses these two schemes for out-of-band emission reduction. Moreover, the appropriate windowing duration design is proposed in terms of both the out-of-band emission suppression and throughput performance for all mandatory mode of IEEE 802.11af system. The proposed time-domain windowing design reduces the number of multiplier by 96.5%.