1-2hit |
This paper deals with the security of chaos-based “true” random number generators (RNG)s. An attack method is proposed to analyze the security weaknesses of chaos-based RNGs and its convergence is proved using a master slave synchronization scheme. Attack on a RNG based on a double-scroll attractor is also presented as an example. All secret parameters of the RNG are revealed where the only information available is the structure of the RNG and a scalar time series observed from the double-scroll attractor. Simulation and numerical results of the proposed attack method are given such that the RNG doesn't fulfill NIST-800-22 statistical test suite, not only the next bit but also the same output bit stream of the RNG can be reproduced.
Salih ERGUN Ulkuhan GULER Kunihiro ASADA
A novel random number generation method based on chaotic sampling of regular waveform is proposed. A high speed IC truly random number generator based on this method is also presented. Simulation and experimental results, verifying the feasibility of the circuit, are given. Numerical binary data obtained according to the proposed method pass the four basic tests of FIPS-140-2, while experimental data pass the full NIST-800-22 random number test suite without post-processing.