1-2hit |
Naomi YAGI Tomomoto ISHIKAWA Yutaka HATA
This paper describes an ultrasonic system that estimates the cell quantity of an artificial culture bone, which is effective for appropriate treat with a composite of this material and Bone Marrow Stromal Cells. For this system, we examine two approaches for analyzing the ultrasound waves transmitted through the cultured bone, including stem cells to estimate cell quantity: multiple regression and fuzzy inference. We employ two characteristics from the obtained wave for applying each method. These features are the amplitude and the frequency; the amplitude is measured from the obtained wave, and the frequency is calculated by the cross-spectrum method. The results confirmed that the fuzzy inference method yields the accurate estimates of cell quantity in artificial culture bone. Using this ultrasonic estimation system, the orthopaedic surgeons can choose the composites that contain favorable number of cells before the implantation.
This paper focuses on a global ultrasonic system for self-localization of a mobile robot. The global ultrasonic system consists of some ultrasonic generators fixed at some arbitrary position in the global coordinates and two receivers in the moving coordinates of the mobile robot. This system is used to obtain the state vector of the mobile robot in the global coordinates from the distance measurement between the ultrasonic generator and the receiver. In order to avoid the cross-talk and to synchronize the ultrasonic sensors, the sequential cuing technique using small-sized radio frequency module is adopted. An extended Kalman filter algorithm is used to process the noisy ultrasonic signal and to estimate the state vector. Computer simulations and experiments are conducted to verify the effectiveness of the proposed global ultrasonic system.