1-4hit |
Hiroya MORITA Hideki KAWAI Kenji TAKEHARA Naoki MATSUDA Toshihiko NAGAMURA
Photophysical properties of water-soluble porphyrin were studied in aqueous solutions with/without DNA and in DNA solid films. Ultrathin films were prepared from aqueous DNA solutions by a spin-coating method on glass or on gold nanoparticles (AuNPs). Remarkable enhancement of phosphorescence was observed for porphyrin immobilized in DNA films spin-coated on AuNPs, which was attributed to the electric field enhancement and the increased radiative rate by localized surface plasmon resonance of AuNPs.
Layered Multicomposites by Sequential Adsorption (LAMSA) is layer by layer approach for ultrathin film fabrication that has been applied to a variety of organic and inorganic materials. In this paper, we present our objectives and work on the fabrication and modification of display devices and sensors primarily using LAMSA techniques. The term supramolecular layer assembly denotes the selective incorporation of processing techniques, layer configuration and molecular ordering that is achieved within planar devices. The first application involves modifying a polymer light emitting diode (PLED) device fabricated using the ITO/MEH-PPV/Ca protocol with ultrathin polyaniline derivatives. The second example involves photoinduced alignment in a hybrid LC cell configuration using polarized light with azo dye/polyelectrolyte ultrathin films. A supramolecular concept on substrates for opto- bioelectronic sensor configurations is described.
Yusuke AOKI Keizo KATO Kazunari SHINBO Futao KANEKO Takashi WAKAMATSU
Attenuated total reflection (ATR) properties and scattered light properties were measured for Ag thin films and arachidic acid (C20) Langmuir-Blodgett (LB) ultrathin films on the Ag thin films to obtain the information about their complex dielectric constants and surface roughness utilizing an excited surface plasmon polariton. The complex dielectric constants for the Ag thin films and the C20 LB films were obtained by fitting the calculated ATR curves to the experimental ones. The surface roughnesses of these films were estimated by the angular distribution of the scattered light assuming the Gaussian function as an autocorrelation function and a linear superposition of roughness spectra. The angular spectra strongly depended on the roughness parameters: the transverse correlation length σ and the surface corrugation depth δ. The experimental angular distributions were explained by some pairs of σ and δ. It was suggested that the surface roughness of the C20 LB films changed with the number of monolayers since the angular spectra varied with the number of the C20 LB monolayers on the Ag films. It is thought that the measurement of the scattered light is useful to evaluate surface roughnesses of LB ultrathin films.
Yasuhisa OMURA Sadao NAKASHIMA Katsutoshi IZUMI
A 0.1-µm-gate CMOS/SIMOX has been successfully fabricated using high quality SIMOX substrates. The propagation delay time for the 0.1-µm-gate CMOS/SIMOX is not so noticeable due to the parasitic resistance of the source and drain regions. We anticipate 0.1-µm-gate CMOS/SIMOX devices with a delay time of less than 20 ps at a supply voltage of 1.5 V by reducing the remaining parasitic resistance and capacitances.