1-7hit |
A pre-trained deep convolutional neural network (DCNN) is adopted as a feature extractor to extract the feature representation of vein images for hand-dorsa vein recognition. In specific, a novel selective deep convolutional feature is proposed to obtain more representative and discriminative feature representation. Extensive experiments on the lab-made database obtain the state-of-the-art recognition result, which demonstrates the effectiveness of the proposed model.
Hand-dorsa vein recognition is solved based on the convolutional activations of the pre-trained deep convolutional neural network (DCNN). In specific, a novel task-specific cross-convolutional-layer pooling is proposed to obtain the more representative and discriminative feature representation. Rigorous experiments on the self-established database achieves the state-of-the-art recognition result, which demonstrates the effectiveness of the proposed model.
A novel image enhancement method for vein recognition is introduced. Inspired by observation that the intensity of the vein vessel changes rapidly during the smoothing process compared to that of background (i.e., skin tissue) due to its thin and long shape, we propose to exploit the smoothing speed as a restoration weight for the vein image enhancement. Experimental results based on the CASIA multispectral palm vein database demonstrate that the proposed method is effective to improve the performance of vein recognition.
Jun WANG Guoqing WANG Leida LI
A quantized index for evaluating the pattern similarity of two different datasets is designed by calculating the number of correlated dictionary atoms. Guided by this theory, task-specific biometric recognition model transferred from state-of-the-art DNN models is realized for both face and vein recognition.
Fuqiang LI Tongzhuang ZHANG Yong LIU Guoqing WANG
The ignored side effect reflecting in the introduction of mismatching brought by contrast enhancement in representative SIFT based vein recognition model is investigated. To take advantage of contrast enhancement in increasing keypoints generation, hierarchical keypoints selection and mismatching removal strategy is designed to obtain state-of-the-art recognition result.
Guoqing WANG Jun WANG Zaiyu PAN
Both gender and identity recognition task with hand vein information is solved based on the proposed cross-selected-domain transfer learning model. State-of-the-art recognition results demonstrate the effectiveness of the proposed model for pattern recognition task, and the capability to avoid over-fitting of fine-tuning DCNN with small-scaled database.
Jialiang PENG Qiong LI Ahmed A. ABD EL-LATIF Ning WANG Xiamu NIU
In this paper, a new finger vein recognition method based on Gabor wavelet and Local Binary Pattern (GLBP) is proposed. In the new scheme, Gabor wavelet magnitude and Local Binary Pattern operator are combined, so the new feature vector has excellent stability. We introduce Block-based Linear Discriminant Analysis (BLDA) to reduce the dimensionality of the GLBP feature vector and enhance its discriminability at the same time. The results of an experiment show that the proposed approach has excellent performance compared to other competitive approaches in current literatures.