The search functionality is under construction.

Keyword Search Result

[Keyword] waveband(14hit)

1-14hit
  • Bandwidth Abundant Optical Networking Enabled by Spatially-Jointed and Multi-Band Flexible Waveband Routing Open Access

    Hiroshi HASEGAWA  

     
    INVITED PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-B No:1
      Page(s):
    16-26

    The novel optical path routing architecture named flexible waveband routing networks is reviewed in this paper. The nodes adopt a two-stage path routing scheme where wavelength selective switches (WSSs) bundle optical paths and form a small number of path groups and then optical switches without wavelength selectivity route these groups to desired outputs. Substantial hardware scale reduction can be achieved as the scheme enables us to use small scale WSSs, and even more, share a WSS by multiple input cores/fibers through the use of spatially-joint-switching. Furthermore, path groups distributed over multiple bands can be switched by these optical switches and thus the adaptation to multi-band transmission is straightforward. Network-wide numerical simulations and transmission experiments that assume multi-band transmission demonstrate the validity of flexible waveband routing.

  • Experimental Verification of 1-Tap Time Domain Beamforming for P-MP Relay System via 75 GHz Band Measured CSI

    Mizuki SUGA  Atsushi OHTA  Kazuto GOTO  Takahiro TSUCHIYA  Nobuaki OTSUKI  Yushi SHIRATO  Naoki KITA  Takeshi ONIZAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/02/06
      Vol:
    E102-B No:8
      Page(s):
    1751-1762

    A propagation experiment on an actual channel is conducted to confirm the effectiveness of the 1-tap time domain beamforming (TDBF) technique we proposed in previous work. This technique offers simple beamforming for the millimeter waveband massive multiple-input multiple-output (MIMO) applied wireless backhaul and so supports the rapid deployment of fifth generation mobile communications (5G) small cells. This paper details propagation experiments in the 75GHz band and the characteristics evaluations of 1-tap TDBF as determined from actual channel measurements. The results show that 1-tap TDBF array gain nearly equals the frequency domain maximal ratio combining (MRC) value, which is ideal processing; the difference is within 0.5dB. In addition, 1-tap TDBF can improve on the signal-to-interference power ratio (SIR) by about 13% when space division multiplexing (SDM) is performed assuming existing levels of channel estimation error.

  • Optical Fast Circuit Switching Networks Employing Dynamic Waveband Tunnel

    Takahiro OGAWA  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:10
      Page(s):
    3139-3148

    We propose a novel dynamic hierarchical optical path network architecture that achieves efficient optical fast circuit switching. In order to complete wavelength path setup/teardown efficiently, the proposed network adaptively manages waveband paths and bundles of optical paths, which provide virtual mesh connectivity between node pairs for wavelength paths. Numerical experiments show that operational and facility costs are significantly reduced by employing the adaptive virtual waveband connections.

  • Effects of Optical Layer Protection Granularity in Survivable Hierarchical Optical Path Network

    Yoshiyuki YAMADA  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    LETTER-Network

      Vol:
    E95-B No:9
      Page(s):
    2959-2963

    This study compares the performances of waveband protection and wavelength path protection in survivable hierarchical optical path networks. Network costs and the number of switching operations necessary are evaluated for different ratios of protected demand. Numerical results demonstrate that waveband protection can drastically decrease the number of switching operations in the case of failure, while both waveband and wavelength path protection effectively reduce the network resources needed compared to single layer optical path networks.

  • Optical Node Architectures That Utilize Dedicated Add/Drop Switches to Realize Colorless, Directionless and Contentionless Capability

    Yoshiyuki YAMADA  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:4
      Page(s):
    1307-1316

    This paper proposes optical node architectures for the single-layer optical cross-connect (OXC) and hierarchical OXC (HOXC) that utilize dedicated add/drop switches for originating/terminating traffic at a node. For both single-layer OXC and HOXC, three architectures with different restrictions on add/drop capabilities are presented. The performance of the proposed architectures is compared through numerical experiments. The architectures significantly reduce total switch scale and minimize necessary switch size while attaining colorless, directionless and contentionless capabilities.

  • Virtual Fiber Networking and Impact of Optical Path Grooming on Creating Efficient Layer One Services

    Fumisato NARUSE  Yoshiyuki YAMADA  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER

      Vol:
    E95-B No:3
      Page(s):
    723-729

    This paper presents a novel “virtual fiber” network service that exploits wavebands. This service provides virtual direct tunnels that directly convey wavelength paths to connect customer facilities. To improve the resource utilization efficiency of the service, a network design algorithm is developed that can allow intermediate path grooming at limited nodes and can determine the best node location. Numerical experiments demonstrate the effectiveness of the proposed service architecture.

  • Compact Matrix-Switch-Based Hierarchical Optical Path Cross-Connect with Colorless Waveband Add/Drop Ratio Restriction

    Ryosuke HIRAKO  Kiyo ISHII  Hiroshi HASEGAWA  Ken-ichi SATO  Osamu MORIWAKI  

     
    PAPER

      Vol:
    E94-B No:4
      Page(s):
    918-927

    We propose a compact matrix-switch-based hierarchical optical cross-connect (HOXC) architecture that effectively handles the colorless waveband add/drop ratio restriction so as to realize switch scale reduction. In order to implement the colorless waveband add/drop function, we develop a wavelength MUX/DMUX that can be commonly used by different wavebands. We prove that the switch scale of the proposed HOXC is much smaller than that of conventional single-layer optical cross-connects (OXCs) and a typical HOXC. Furthermore, we introduce a prototype system based on the proposed architecture that utilizes integrated novel wavelength MUXs/DMUXs. Transmission experiments prove its technical feasibility.

  • Diffraction-Free Bessel Beams at mm- and Submm-Wavebands Open Access

    Wenbin DOU  Yanzhong YU  

     
    INVITED PAPER

      Vol:
    E92-C No:9
      Page(s):
    1130-1136

    Bessel beams are a family of diffraction-free beams. They have many unique properties and prospective applications. Much attention has been focused to this subject in optics. Recently, the studies of such beams at mm- and submm- wavebands have been carried out in our group. The investigation results, including their theories, generation, propagation and potential applications, are presented in this paper.

  • Optical Cross-Connect Switch Architectures for Hierarchical Optical Path Networks

    Shoji KAKEHASHI  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Switching for Communications

      Vol:
    E91-B No:10
      Page(s):
    3174-3184

    This paper proposes new switch architectures for hierarchical optical path cross-connect (HOXC) systems. The architectures allow incremental expansion of system scale in terms of the number of input/output fiber ports, wavebands, and optical paths per waveband. These features assure the cost-effective introduction of HOXCs even at the outset when traffic volume is not so large. Furthermore the effectiveness of the proposed switch architectures is demonstrated in a comparison with single-layer OXCs (conventional OXCs). The results provide useful criteria for the introduction of HOXCs in terms of hardware scale.

  • Formulation of Waveguide Connection for Waveband MUX/DEMUX Using Concatenated Arrayed-Waveguide Gratings

    Shoji KAKEHASHI  Hiroshi HASEGAWA  Ken-ichi SATO  Osamu MORIWAKI  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E90-B No:10
      Page(s):
    2950-2952

    Recently we proposed a new waveband MUX/DEMUX that uses two concatenated cyclic AWGs. We analyse and formulate connection arrangements of the waveguides connecting the two AWGs. The port utilization of the device is shown to be 100% with bi-directional input fibers.

  • Prospects and Challenges of Multi-Layer Optical Networks Open Access

    Ken-ichi SATO  Hiroshi HASEGAWA  

     
    SURVEY PAPER-Traffic Engineering and Multi-Layer Networking

      Vol:
    E90-B No:8
      Page(s):
    1890-1902

    This paper investigates the prospects and challenges of hierarchical optical path networks. The merits and issues of introducing higher order optical paths are elucidated. State of the art of the key enabling technologies are demonstrated including hierarchical optical cross-connect switch architectures, hierarchical optical path network design algorithms, a newly developed waveband filter, and waveband conversion technologies.

  • Optical WDM Multicasting Design under Wavelength Conversion Constraints

    Hiroaki HONDA  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Optical Network Architecture

      Vol:
    E88-B No:5
      Page(s):
    1890-1897

    In the next-generation networks, ultra high-speed data transmission will become necessary to support a variety of advanced point-to-point and multipoint multimedia services with stringent quality-of-service (QoS) constraints. Such a requirement desires the realization of optical WDM networks. Researches on multicast in optical WDM networks have become active for the purpose of efficient use of wavelength resources. Since multiple channels are more likely to share the same links in WDM multicast, effective routing and wavelength assignment (RWA) technology becomes very important. The introduction of the wavelength conversion technology leads to more efficient use of wavelength resources. This technology, however, has problems to be solved, and the number of wavelength converters will be restricted in the network. In this paper, we propose an effective WDM multicast design method on condition that wavelength converters on each switching node are restricted, which consists of three separate steps: routing, wavelength converter allocation, and wavelength assignment. In our proposal, preferentially available waveband is classified according to the scale of multicast group. Assuming that the number of wavelength converters on each switching node is limited, we evaluate its performance from a viewpoint of the call blocking probability.

  • Tunability Benefit for a Hierarchical Waveband and Wavelength Cross-Connect Node

    Yoshiharu MAENO  Shigeyuki YANAGIMACHI  Rauf IZMAILOV  Soichiro ARAKI  

     
    LETTER-Switching

      Vol:
    E86-B No:8
      Page(s):
    2532-2534

    We propose a hierarchical cross-connect node employing tunable waveband aggregators on the internal links. In a square grid network, the number of the switch ports for the internal links is reduced by 40 to 60% when the number of nodes is 50.

  • Simultaneous Processing and Routing of Packets in a Synchronous Optical Packet Switched Network

    Christina (Tanya) POLITI  Mike O'MAHONY  

     
    PAPER

      Vol:
    E86-B No:5
      Page(s):
    1515-1521

    A novel optical packet switch architecture is proposed that can support simultaneous processing and routing of packets in bands, without disturbing the granularity of the system. The packet router consists of a waveband converter and an AWG, combined in such a way that processing and switching of packets within and between the wavebands is allowed. The waveband converter is based on four-wave mixing in semiconductor optical amplifiers. Experimental results of the waveband conversion technique are presented to prove the feasibility of such a scheme. Simulation results of an 12 packet router are used to explain the operation of such a subsystem for a synchronous optical packet switched network.