The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] wireless data transmission(2hit)

1-2hit
  • Optimal Censorial Relaying for Communications over Rayleigh Fading Channels

    Lun-Chung PENG  Kuen-Tsair LAY  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:8
      Page(s):
    2150-2161

    To provide robust wireless data transmission over fading channels, various schemes which involve the use of relays have been proposed. In some of those schemes, the relay chooses not to forward the received message if its reliability is deemed as too low. Some researchers refer to such schemes as selective decode-and-forward. Our work in this paper falls into such a category. More specifically speaking, the relay in our system is a censorial relay (a relay that performs censorial task). It evaluates the reliability, in terms of log likelihood ratio (LLR), of a received data bit (from the source). If its LLR magnitude is below some preset threshold, then it is censored (i.e. not sent to the destination). When the channel is Rayleigh faded, closed-form bit error rate (BER) expressions for the proposed system are derived for several scenarios. Those scenarios are differentiated by the availability of an energy detector (ED) and the various degrees of knowledge regarding the channel state information (CSI). Aided by those closed-form BER expressions, the system parameters can be efficiently optimized to achieve the minimum BER. Simulation results are observed to closely match theoretical values, as computed by the afore-mentioned closed-form BER expressions. As compared to some existing relay-assisted systems in which censoring is incorporated, the performance of our system is better in terms of BER when the same amount of CSI is exploited.

  • Energy Consumption Tradeoffs for Compressed Wireless Data at a Mobile Terminal

    Jari VEIJALAINEN  Eetu OJANEN  Mohammad Aminul HAQ  Ville-Pekka VAHTEALA  Mitsuji MATSUMOTO  

     
    PAPER-Mobile Radio

      Vol:
    E87-B No:5
      Page(s):
    1123-1130

    The high-end telecom terminal and PDAs, sometimes called Personal Trusted Devices (PTDs) are programmable, have tens of megabytes memory, and rather fast processors. In this paper we analyze, when it is energy-efficient to transfer application data compressed over the downlink and then decompress it at the terminal, or compress it first at the terminal and then send it compressed over up-link. These questions are meaningful in the context of usual application code or data and streams that are stored before presentation and require lossless compression methods to be used. We deduce an analytical model and assess the model parameters based on experiments in 2G (GSM) and 3G (FOMA) network. The results indicate that if the reduction through compression in size of the file to be downloaded is higher than ten per cent, energy is saved as compared to receiving the file uncompressed. For the upload case even two percent reduction in size is enough for energy savings at the terminal with the current transmission speeds and observed energy parameters. If time is saved using compressed files during transmission, then energy is certainly saved. From energy savings at the terminal we cannot deduce time savings, however. Energy and time consumed at the server for compression/decompression is considered negligible in this context and ignored. The same holds for the base stations and other fixed telecom infrastructure components.