The search functionality is under construction.

Keyword Search Result

[Keyword] working time(3hit)

1-3hit
  • Analysis of Work Efficiency and Quality of Software Maintenance Using Cross-Company Dataset

    Masateru TSUNODA  Akito MONDEN  Kenichi MATSUMOTO  Sawako OHIWA  Tomoki OSHINO  

     
    PAPER

      Pubricized:
    2020/08/31
      Vol:
    E104-D No:1
      Page(s):
    76-90

    Software maintenance is an important activity in the software lifecycle. Software maintenance does not only mean removing faults found after software release. Software needs extensions or modifications of its functions owing to changes in the business environment and software maintenance also refers to them. To help users and service suppliers benchmark work efficiency for software maintenance, and to clarify the relationships between software quality, work efficiency, and unit cost of staff, we used a dataset that includes 134 data points collected by the Economic Research Association in 2012, and analyzed the factors that affected the work efficiency of software maintenance. In the analysis, using a multiple regression model, we clarified the relationships between work efficiency and programming language and productivity factors. To analyze the influence to the quality, relationships of fault ratio was analyzed using correlation coefficients. The programming language and productivity factors affect work efficiency. Higher work efficiency and higher unit cost of staff do not affect the quality of software maintenance.

  • Maintenance Modeling for a System Equipped on Ship

    Tomohiro KITAGAWA  Tetsushi YUGE  Shigeru YANAGI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E100-A No:2
      Page(s):
    629-638

    The maintenance of a system on a ship has limitations when the ship is engaged in a voyage because of limited maintenance resources. When a system fails, it is either repaired instantly on ship with probability p or remains unrepaired during the voyage with probability 1-p owing to the lack of maintenance resources. In the latter case, the system is repaired after the voyage. We propose two management policies for the overhaul interval of an IFR system: one manages the overhaul interval by number of voyages and the other manages it by the total voyage time. Our goal is to determine the optimal policy that ensures the required availability of the system and minimizes the expected cost rate.

  • Replacement and Preventive Maintenance Models with Random Working Times

    Mingchih CHEN  Syouji NAKAMURA  Toshio NAKAGAWA  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E93-A No:2
      Page(s):
    500-507

    This paper considers replacement and maintenance policies for an operating unit which works at random times for jobs. The unit undergoes minimal repairs at failures and is replaced at a planned time T or at a number N of working times, whichever occurs first. The expected cost rate is obtained, and an optimal policy which minimizes it is derived analytically. The imperfect preventive maintenance (PM) model, where the unit is improved by PM after the completion of each working time, is analyzed. Furthermore, when the work of a job incurs some damage to the unit, the replacement model with number N is proposed. The expected cost rate is obtained by using theory of cumulative processes. Two modified models, where the unit is replaced at number N or at the first completion of the working time over time T, and it is replaced at T or number N, whichever occurs last, are also proposed. Finally, when the unit is replaced at time T, number N or Kth failure, whichever occurs first, the expected cost rate is also obtained.