The search functionality is under construction.
The search functionality is under construction.

New Approaches for Measurement of Static Electricity toward Preventing ESD

Osamu FUJIWARA

  • Full Text Views

    0

  • Cite this

Summary :

Serious failures of the latest electronic equipments occur easily due to electrostatic discharge (ESD) , which can be caused frequently by the electrification phenomena of human-body walking on the floor. The number of the above damaging incidents has significantly been increasing with an increased use of integrated semiconductor elements with lower operation power. The most effective measures against the ESD consist in preventive ones, which are to obtain dynamic behaviors of the electric charge before the ESD happens, thereby preventing the charge accumulation. From this point of view, this paper describes new approaches for measurement of the static electricity directed toward preventing the ESD. First, a two-dimensional measurement method for visualizing charge distributions is described. This principle is based on visualizing the potential distribution induced in the array electrodes from the electrostatic fields. For showing usefulness of the visualization measurement, a prototype was built and attempts were made on the visualizations for the static electricity distributions of charged bodies. Second, a potential calculation of the human body charged by walking on the floor is described. A model was shown for analyzing the human-body potential on the floor, and the theoretical equation for describing the potential attenuation process was derived in the closed form in the Laplacian transformation domain. In order to obtain the typical half-life of the human-body potential, numerical computations were performed using a reverse Laplacian transformation. The experiments were also conducted for confirming the validity of the computed results. Finally, a new method is described for estimating dynamic behaviors of the occurrence charges of the human body electrified by walking-motions. Statistical measurements of the charges and potentials were made for the fundamental walking-motions specified here. The pace transitions of the potentials due to continuous walking and stepping were also measured and their results were explained from the electrification properties for the fundamental walking-motions.

Publication
IEICE TRANSACTIONS on Communications Vol.E75-B No.3 pp.131-140
Publication Date
1992/03/25
Publicized
Online ISSN
DOI
Type of Manuscript
Special Section INVITED PAPER (Special Issue on Measurements and Control of Electromagnetic Interference)
Category

Authors

Keyword