Packet concentrators are used in many high-speed computer communication systems such as fast packet switches. In these systems, the time available for concentration is very short. It is therefore desirable to realize the packet concentrators as hardware chips for fast concentration. The knockout concentrator was proposed for hardware realization. In this paper, we improve this concentrator to reduce the probability of packet loss, and the improved concentrator is called wraparound knockout concentrator. This concentrator has several wraparound paths within it, and it does not require any additional pin per chip. After contention among the packets in a slot, each winner goes to a distinct output, some losers circulate along the wraparound paths for contention in the subsequent slot, and the remaining losers are discarded. In this manner, some losers are not discarded immediately and they still have the chance to go to the outputs in the subsequent slot, thereby reducing the probability of packet loss. We analyze the number of logic gates required and the probability of packet loss. The numerical results show that if the proposed concentrator has a few wraparound paths, the probability of packet loss can already be reduced by orders of magnitude.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yiu-Wing LEUNG, "Design and Analysis of a Packet Concentrator" in IEICE TRANSACTIONS on Communications,
vol. E83-B, no. 5, pp. 1115-1121, May 2000, doi: .
Abstract: Packet concentrators are used in many high-speed computer communication systems such as fast packet switches. In these systems, the time available for concentration is very short. It is therefore desirable to realize the packet concentrators as hardware chips for fast concentration. The knockout concentrator was proposed for hardware realization. In this paper, we improve this concentrator to reduce the probability of packet loss, and the improved concentrator is called wraparound knockout concentrator. This concentrator has several wraparound paths within it, and it does not require any additional pin per chip. After contention among the packets in a slot, each winner goes to a distinct output, some losers circulate along the wraparound paths for contention in the subsequent slot, and the remaining losers are discarded. In this manner, some losers are not discarded immediately and they still have the chance to go to the outputs in the subsequent slot, thereby reducing the probability of packet loss. We analyze the number of logic gates required and the probability of packet loss. The numerical results show that if the proposed concentrator has a few wraparound paths, the probability of packet loss can already be reduced by orders of magnitude.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e83-b_5_1115/_p
Copy
@ARTICLE{e83-b_5_1115,
author={Yiu-Wing LEUNG, },
journal={IEICE TRANSACTIONS on Communications},
title={Design and Analysis of a Packet Concentrator},
year={2000},
volume={E83-B},
number={5},
pages={1115-1121},
abstract={Packet concentrators are used in many high-speed computer communication systems such as fast packet switches. In these systems, the time available for concentration is very short. It is therefore desirable to realize the packet concentrators as hardware chips for fast concentration. The knockout concentrator was proposed for hardware realization. In this paper, we improve this concentrator to reduce the probability of packet loss, and the improved concentrator is called wraparound knockout concentrator. This concentrator has several wraparound paths within it, and it does not require any additional pin per chip. After contention among the packets in a slot, each winner goes to a distinct output, some losers circulate along the wraparound paths for contention in the subsequent slot, and the remaining losers are discarded. In this manner, some losers are not discarded immediately and they still have the chance to go to the outputs in the subsequent slot, thereby reducing the probability of packet loss. We analyze the number of logic gates required and the probability of packet loss. The numerical results show that if the proposed concentrator has a few wraparound paths, the probability of packet loss can already be reduced by orders of magnitude.},
keywords={},
doi={},
ISSN={},
month={May},}
Copy
TY - JOUR
TI - Design and Analysis of a Packet Concentrator
T2 - IEICE TRANSACTIONS on Communications
SP - 1115
EP - 1121
AU - Yiu-Wing LEUNG
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E83-B
IS - 5
JA - IEICE TRANSACTIONS on Communications
Y1 - May 2000
AB - Packet concentrators are used in many high-speed computer communication systems such as fast packet switches. In these systems, the time available for concentration is very short. It is therefore desirable to realize the packet concentrators as hardware chips for fast concentration. The knockout concentrator was proposed for hardware realization. In this paper, we improve this concentrator to reduce the probability of packet loss, and the improved concentrator is called wraparound knockout concentrator. This concentrator has several wraparound paths within it, and it does not require any additional pin per chip. After contention among the packets in a slot, each winner goes to a distinct output, some losers circulate along the wraparound paths for contention in the subsequent slot, and the remaining losers are discarded. In this manner, some losers are not discarded immediately and they still have the chance to go to the outputs in the subsequent slot, thereby reducing the probability of packet loss. We analyze the number of logic gates required and the probability of packet loss. The numerical results show that if the proposed concentrator has a few wraparound paths, the probability of packet loss can already be reduced by orders of magnitude.
ER -