This paper presents a performance comparison of the channel-interleaving method in the frequency domain, i.e., bit interleaving after channel encoding, symbol interleaving after data modulation, and chip interleaving after spreading, for Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) wireless access with frequency domain spreading, in order to reduce the required average received signal energy per symbol-to-background noise power spectrum density ratio (Es/N0) and achieve the maximum radio link capacity. Simulation results show that, for QPSK data modulation employing turbo coding with the channel coding rate R=3/4, the chip-interleaving method decreases the required average received Es/N0 the most for various radio parameters and propagation model conditions, where the number of code-multiplexing, Cmux, the spreading factor, SF, the r.m.s. delay spread, σ, the number of multipaths, L, and the maximum Doppler frequency, fD, are varied as parameters. For example, when Cmux=12 of SF=16, the improvement in the required average received Es/N0 from the case without interleaving at the average packet error rate (PER) of 10-2, is approximately 0.3, 0.3, and 1.4 dB for the bit, symbol, and chip interleaving, respectively, in a L=12-path exponential decayed Rayleigh fading channel with σ of 0.043 µsec and fD of 20 Hz. This is because the chip interleaving obtains a higher diversity gain by replacing the chip assignment over the entire bandwidth. Meanwhile, in 16QAM data modulation with R=1/2, the performance of the chip interleaving is deteriorated, when Cmux/SF>0.25, due to the inter-code interference caused by different fading variations over the spreading duration since the successive chips during the spreading duration are interleaved to the separated sub-carriers. Thus, bit interleaving exhibits the best performance although the difference between bit interleaving and symbol interleaving is slight. Consequently, we conclude that the bit-interleaving method is the best among the three interleaving methods for reducing the required received Es/N0 considering the tradeoff between the randomization effect of burst errors and the mitigation of inter-code interference assuming the application of adaptive modulation and channel coding scheme in OFCDM employing frequency domain spreading.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Noriyuki MAEDA, Hiroyuki ATARASHI, Mamoru SAWAHASHI, "Performance Comparison of Channel Interleaving Methods in Frequency Domain for VSF-OFCDM Broadband Wireless Access in Forward Link" in IEICE TRANSACTIONS on Communications,
vol. E86-B, no. 1, pp. 300-313, January 2003, doi: .
Abstract: This paper presents a performance comparison of the channel-interleaving method in the frequency domain, i.e., bit interleaving after channel encoding, symbol interleaving after data modulation, and chip interleaving after spreading, for Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) wireless access with frequency domain spreading, in order to reduce the required average received signal energy per symbol-to-background noise power spectrum density ratio (Es/N0) and achieve the maximum radio link capacity. Simulation results show that, for QPSK data modulation employing turbo coding with the channel coding rate R=3/4, the chip-interleaving method decreases the required average received Es/N0 the most for various radio parameters and propagation model conditions, where the number of code-multiplexing, Cmux, the spreading factor, SF, the r.m.s. delay spread, σ, the number of multipaths, L, and the maximum Doppler frequency, fD, are varied as parameters. For example, when Cmux=12 of SF=16, the improvement in the required average received Es/N0 from the case without interleaving at the average packet error rate (PER) of 10-2, is approximately 0.3, 0.3, and 1.4 dB for the bit, symbol, and chip interleaving, respectively, in a L=12-path exponential decayed Rayleigh fading channel with σ of 0.043 µsec and fD of 20 Hz. This is because the chip interleaving obtains a higher diversity gain by replacing the chip assignment over the entire bandwidth. Meanwhile, in 16QAM data modulation with R=1/2, the performance of the chip interleaving is deteriorated, when Cmux/SF>0.25, due to the inter-code interference caused by different fading variations over the spreading duration since the successive chips during the spreading duration are interleaved to the separated sub-carriers. Thus, bit interleaving exhibits the best performance although the difference between bit interleaving and symbol interleaving is slight. Consequently, we conclude that the bit-interleaving method is the best among the three interleaving methods for reducing the required received Es/N0 considering the tradeoff between the randomization effect of burst errors and the mitigation of inter-code interference assuming the application of adaptive modulation and channel coding scheme in OFCDM employing frequency domain spreading.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e86-b_1_300/_p
Copy
@ARTICLE{e86-b_1_300,
author={Noriyuki MAEDA, Hiroyuki ATARASHI, Mamoru SAWAHASHI, },
journal={IEICE TRANSACTIONS on Communications},
title={Performance Comparison of Channel Interleaving Methods in Frequency Domain for VSF-OFCDM Broadband Wireless Access in Forward Link},
year={2003},
volume={E86-B},
number={1},
pages={300-313},
abstract={This paper presents a performance comparison of the channel-interleaving method in the frequency domain, i.e., bit interleaving after channel encoding, symbol interleaving after data modulation, and chip interleaving after spreading, for Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) wireless access with frequency domain spreading, in order to reduce the required average received signal energy per symbol-to-background noise power spectrum density ratio (Es/N0) and achieve the maximum radio link capacity. Simulation results show that, for QPSK data modulation employing turbo coding with the channel coding rate R=3/4, the chip-interleaving method decreases the required average received Es/N0 the most for various radio parameters and propagation model conditions, where the number of code-multiplexing, Cmux, the spreading factor, SF, the r.m.s. delay spread, σ, the number of multipaths, L, and the maximum Doppler frequency, fD, are varied as parameters. For example, when Cmux=12 of SF=16, the improvement in the required average received Es/N0 from the case without interleaving at the average packet error rate (PER) of 10-2, is approximately 0.3, 0.3, and 1.4 dB for the bit, symbol, and chip interleaving, respectively, in a L=12-path exponential decayed Rayleigh fading channel with σ of 0.043 µsec and fD of 20 Hz. This is because the chip interleaving obtains a higher diversity gain by replacing the chip assignment over the entire bandwidth. Meanwhile, in 16QAM data modulation with R=1/2, the performance of the chip interleaving is deteriorated, when Cmux/SF>0.25, due to the inter-code interference caused by different fading variations over the spreading duration since the successive chips during the spreading duration are interleaved to the separated sub-carriers. Thus, bit interleaving exhibits the best performance although the difference between bit interleaving and symbol interleaving is slight. Consequently, we conclude that the bit-interleaving method is the best among the three interleaving methods for reducing the required received Es/N0 considering the tradeoff between the randomization effect of burst errors and the mitigation of inter-code interference assuming the application of adaptive modulation and channel coding scheme in OFCDM employing frequency domain spreading.},
keywords={},
doi={},
ISSN={},
month={January},}
Copy
TY - JOUR
TI - Performance Comparison of Channel Interleaving Methods in Frequency Domain for VSF-OFCDM Broadband Wireless Access in Forward Link
T2 - IEICE TRANSACTIONS on Communications
SP - 300
EP - 313
AU - Noriyuki MAEDA
AU - Hiroyuki ATARASHI
AU - Mamoru SAWAHASHI
PY - 2003
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E86-B
IS - 1
JA - IEICE TRANSACTIONS on Communications
Y1 - January 2003
AB - This paper presents a performance comparison of the channel-interleaving method in the frequency domain, i.e., bit interleaving after channel encoding, symbol interleaving after data modulation, and chip interleaving after spreading, for Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) wireless access with frequency domain spreading, in order to reduce the required average received signal energy per symbol-to-background noise power spectrum density ratio (Es/N0) and achieve the maximum radio link capacity. Simulation results show that, for QPSK data modulation employing turbo coding with the channel coding rate R=3/4, the chip-interleaving method decreases the required average received Es/N0 the most for various radio parameters and propagation model conditions, where the number of code-multiplexing, Cmux, the spreading factor, SF, the r.m.s. delay spread, σ, the number of multipaths, L, and the maximum Doppler frequency, fD, are varied as parameters. For example, when Cmux=12 of SF=16, the improvement in the required average received Es/N0 from the case without interleaving at the average packet error rate (PER) of 10-2, is approximately 0.3, 0.3, and 1.4 dB for the bit, symbol, and chip interleaving, respectively, in a L=12-path exponential decayed Rayleigh fading channel with σ of 0.043 µsec and fD of 20 Hz. This is because the chip interleaving obtains a higher diversity gain by replacing the chip assignment over the entire bandwidth. Meanwhile, in 16QAM data modulation with R=1/2, the performance of the chip interleaving is deteriorated, when Cmux/SF>0.25, due to the inter-code interference caused by different fading variations over the spreading duration since the successive chips during the spreading duration are interleaved to the separated sub-carriers. Thus, bit interleaving exhibits the best performance although the difference between bit interleaving and symbol interleaving is slight. Consequently, we conclude that the bit-interleaving method is the best among the three interleaving methods for reducing the required received Es/N0 considering the tradeoff between the randomization effect of burst errors and the mitigation of inter-code interference assuming the application of adaptive modulation and channel coding scheme in OFCDM employing frequency domain spreading.
ER -