In wireless environment, TCP suffers from significant performance degradation due to bit errors on wireless link and handovers because it responds to all packet losses by invoking congestion control even though packet losses are not related to congestion. Several schemes have been proposed to improve the performance degradation due to each cause. They have been evaluated in a specific network environment where either bit errors or handover occurs, i.e. they do not occur at the same time. In this paper, we reveal the packet recovery mismatch problem in an environment where both of bit errors and handover can cause the performance degradation. We pick up one scenario that TCP traffic is transmitted in the situation that ARQ (Automatic Repeat reQuest) and packet forwarding are implemented together. They are proposed to reduce the influence of bit errors and handover respectively and are natural approaches from the viewpoint of protocol layering. Computer simulation shows that in that scenario both techniques cannot perform efficiently due to interaction of each other. We also propose two buffer control approaches to resolve the packet recovery mismatch problem in our scenario according to applicability of cross-layer operation between layer 2 and layer 3.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yu SAKAI, Yosuke MATSUSHITA, Takahiro MATSUDA, Miki YAMAMOTO, "Mismatch of Packet Recovery Mechanisms for Bit Error and Handover in Wireless TCP" in IEICE TRANSACTIONS on Communications,
vol. E87-B, no. 9, pp. 2626-2633, September 2004, doi: .
Abstract: In wireless environment, TCP suffers from significant performance degradation due to bit errors on wireless link and handovers because it responds to all packet losses by invoking congestion control even though packet losses are not related to congestion. Several schemes have been proposed to improve the performance degradation due to each cause. They have been evaluated in a specific network environment where either bit errors or handover occurs, i.e. they do not occur at the same time. In this paper, we reveal the packet recovery mismatch problem in an environment where both of bit errors and handover can cause the performance degradation. We pick up one scenario that TCP traffic is transmitted in the situation that ARQ (Automatic Repeat reQuest) and packet forwarding are implemented together. They are proposed to reduce the influence of bit errors and handover respectively and are natural approaches from the viewpoint of protocol layering. Computer simulation shows that in that scenario both techniques cannot perform efficiently due to interaction of each other. We also propose two buffer control approaches to resolve the packet recovery mismatch problem in our scenario according to applicability of cross-layer operation between layer 2 and layer 3.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e87-b_9_2626/_p
Copy
@ARTICLE{e87-b_9_2626,
author={Yu SAKAI, Yosuke MATSUSHITA, Takahiro MATSUDA, Miki YAMAMOTO, },
journal={IEICE TRANSACTIONS on Communications},
title={Mismatch of Packet Recovery Mechanisms for Bit Error and Handover in Wireless TCP},
year={2004},
volume={E87-B},
number={9},
pages={2626-2633},
abstract={In wireless environment, TCP suffers from significant performance degradation due to bit errors on wireless link and handovers because it responds to all packet losses by invoking congestion control even though packet losses are not related to congestion. Several schemes have been proposed to improve the performance degradation due to each cause. They have been evaluated in a specific network environment where either bit errors or handover occurs, i.e. they do not occur at the same time. In this paper, we reveal the packet recovery mismatch problem in an environment where both of bit errors and handover can cause the performance degradation. We pick up one scenario that TCP traffic is transmitted in the situation that ARQ (Automatic Repeat reQuest) and packet forwarding are implemented together. They are proposed to reduce the influence of bit errors and handover respectively and are natural approaches from the viewpoint of protocol layering. Computer simulation shows that in that scenario both techniques cannot perform efficiently due to interaction of each other. We also propose two buffer control approaches to resolve the packet recovery mismatch problem in our scenario according to applicability of cross-layer operation between layer 2 and layer 3.},
keywords={},
doi={},
ISSN={},
month={September},}
Copy
TY - JOUR
TI - Mismatch of Packet Recovery Mechanisms for Bit Error and Handover in Wireless TCP
T2 - IEICE TRANSACTIONS on Communications
SP - 2626
EP - 2633
AU - Yu SAKAI
AU - Yosuke MATSUSHITA
AU - Takahiro MATSUDA
AU - Miki YAMAMOTO
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E87-B
IS - 9
JA - IEICE TRANSACTIONS on Communications
Y1 - September 2004
AB - In wireless environment, TCP suffers from significant performance degradation due to bit errors on wireless link and handovers because it responds to all packet losses by invoking congestion control even though packet losses are not related to congestion. Several schemes have been proposed to improve the performance degradation due to each cause. They have been evaluated in a specific network environment where either bit errors or handover occurs, i.e. they do not occur at the same time. In this paper, we reveal the packet recovery mismatch problem in an environment where both of bit errors and handover can cause the performance degradation. We pick up one scenario that TCP traffic is transmitted in the situation that ARQ (Automatic Repeat reQuest) and packet forwarding are implemented together. They are proposed to reduce the influence of bit errors and handover respectively and are natural approaches from the viewpoint of protocol layering. Computer simulation shows that in that scenario both techniques cannot perform efficiently due to interaction of each other. We also propose two buffer control approaches to resolve the packet recovery mismatch problem in our scenario according to applicability of cross-layer operation between layer 2 and layer 3.
ER -