The search functionality is under construction.

Keyword Search Result

[Keyword] wireless(1294hit)

1-20hit(1294hit)

  • Real-Time Monitoring Systems That Provide M2M Communication between Machines Open Access

    Ya ZHONG  

     
    PAPER-Language, Thought, Knowledge and Intelligence

      Pubricized:
    2023/10/17
      Vol:
    E107-A No:7
      Page(s):
    1019-1026

    Artificial intelligence and the introduction of Internet of Things technologies have benefited from technological advances and new automated computer system technologies. Eventually, it is now possible to integrate them into a single offline industrial system. This is accomplished through machine-to-machine communication, which eliminates the human factor. The purpose of this article is to examine security systems for machine-to-machine communication systems that rely on identification and authentication algorithms for real-time monitoring. The article investigates security methods for quickly resolving data processing issues by using the Security operations Center’s main machine to identify and authenticate devices from 19 different machines. The results indicate that when machines are running offline and performing various tasks, they can be exposed to data leaks and malware attacks by both the individual machine and the system as a whole. The study looks at the operation of 19 computers, 7 of which were subjected to data leakage and malware attacks. AnyLogic software is used to create visual representations of the results using wireless networks and algorithms based on previously processed methods. The W76S is used as a protective element within intelligent sensors due to its built-in memory protection. For 4 machines, the data leakage time with malware attacks was 70 s. For 10 machines, the duration was 150 s with 3 attacks. Machine 15 had the longest attack duration, lasting 190 s and involving 6 malware attacks, while machine 19 had the shortest attack duration, lasting 200 s and involving 7 malware attacks. The highest numbers indicated that attempting to hack a system increased the risk of damaging a device, potentially resulting in the entire system with connected devices failing. Thus, illegal attacks by attackers using malware may be identified over time, and data processing effects can be prevented by intelligent control. The results reveal that applying identification and authentication methods using a protocol increases cyber-physical system security while also allowing real-time monitoring of offline system security.

  • RC-Oscillator-Based Battery-Less Wireless Sensing System Using RF Resonant Electromagnetic Coupling Open Access

    Zixuan LI  Sangyeop LEE  Noboru ISHIHARA  Hiroyuki ITO  

     
    PAPER

      Pubricized:
    2023/11/24
      Vol:
    E107-A No:5
      Page(s):
    727-740

    A wireless sensor terminal module of 5cc size (2.5 cm × 2.5 cm × 0.8 cm) that does not require a battery is proposed by integrating three kinds of circuit technologies. (i) a low-power sensor interface: an FM modulation type CMOS sensor interface circuit that can operate with a typical power consumption of 24.5 μW was fabricated by the 0.7-μm CMOS process technology. (ii) power supply to the sensor interface circuit: a wireless power transmission characteristic to a small-sized PCB spiral coil antenna was clarified and applied to the module. (iii) wireless sensing from the module: backscatter communication technology that modulates the signal from the base terminal equipment with sensor information and reflects it, which is used for the low-power sensing operation. The module fabricated includes a rectifier circuit with the PCB spiral coil antenna that receives wireless power transmitted from base terminal equipment by electromagnetic resonance coupling and converts it into DC power and a sensor interface circuit that operates using the power. The interface circuit modulates the received signal with the sensor information and reflects it back to the base terminal. The module could achieve 100 mm communication distance when 0.4 mW power is feeding to the sensor terminal.

  • Mining User Activity Patterns from Time-Series Data Obtained from UWB Sensors in Indoor Environments Open Access

    Muhammad FAWAD RAHIM  Tessai HAYAMA  

     
    PAPER

      Pubricized:
    2023/12/19
      Vol:
    E107-D No:4
      Page(s):
    459-467

    In recent years, location-based technologies for ubiquitous environments have aimed to realize services tailored to each purpose based on information about an individual's current location. To establish such advanced location-based services, an estimation technology that can accurately recognize and predict the movements of people and objects is necessary. Although global positioning system (GPS) has already been used as a standard for outdoor positioning technology and many services have been realized, several techniques using conventional wireless sensors such as Wi-Fi, RFID, and Bluetooth have been considered for indoor positioning technology. However, conventional wireless indoor positioning is prone to the effects of noise, and the large range of estimated indoor locations makes it difficult to identify human activities precisely. We propose a method to mine user activity patterns from time-series data of user's locationss in an indoor environment using ultra-wideband (UWB) sensors. An UWB sensor is useful for indoor positioning due to its high noise immunity and measurement accuracy, however, to our knowledge, estimation and prediction of human indoor activities using UWB sensors have not yet been addressed. The proposed method consists of three steps: 1) obtaining time-series data of the user's location using a UWB sensor attached to the user, and then estimating the areas where the user has stayed; 2) associating each area of the user's stay with a nearby landmark of activity and assigning indoor activities; and 3) mining the user's activity patterns based on the user's indoor activities and their transitions. We conducted experiments to evaluate the proposed method by investigating the accuracy of estimating the user's area of stay using a UWB sensor and observing the results of activity pattern mining applied to actual laboratory members over 30-days. The results showed that the proposed method is superior to a comparison method, Time-based clustering algorithm, in estimating the stay areas precisely, and that it is possible to reveal the user's activity patterns appropriately in the actual environment.

  • 300-GHz-Band Dual-Band Bandstop Filter Based on Two Different Sized Split Ring Resonators Open Access

    Akihiko HIRATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:4
      Page(s):
    107-114

    For 6G mobile communications, it is important to realize a 300 GHz band bandpass filter that fits the occupied bandwidth of wireless communication system to prevent inter-system interference. This paper presents the design of a 300-GHz-band dual-band bandstop filter composed of two types of different sized split ring resonator (SRR) unit cells. The SRR unit cells are formed by a 5-μm-thick gold pattern on a 200-μm-thick quartz substrate. When two different-sized SRR unit cells are placed alternately on the same quartz substrate and the SRR unit cell size is over 260 μm, the stopbands of the dual-band bandstop filter are almost the same as those of the bandstop filter, which is composed of a single SRR unit cell. The insertion loss of the dual-band bandstop filter at 297.4 GHz is 1.8 dB and the 3-dB passband becomes 16.0 GHz (290.4-306.4 GHz). The attenuation in the two stopbands is greater than 20 dB. Six types of dual-band bandstop filters with different arrangement and different distance between SRR unit cells are prototyped, and the effect of the distance and arrangement between different sized SRR unit cells on the transmission characteristics of dual-band bandstop filters were clarified.

  • Design of a Capacitive Coupler for Underwater Wireless Power Transfer Focused on the Landing Direction of a Drone

    Yasumasa NAKA  Masaya TAMURA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:3
      Page(s):
    66-75

    This paper presents the design of a capacitive coupler for underwater wireless power transfer focused on the landing direction of a drone. The main design feature is the relative position of power feeding/receiving points on the coupler electrodes, which depends on the landing direction of the drone. First, the maximum power transfer efficiencies of coupled lines with different feeding positions are derived in a uniform dielectric environment, such as that realized underwater. As a result, these are formulated by the coupling coefficient of the capacitive coupler, the unloaded qualify factor of dielectrics, and hyperbolic functions with complex propagation constants. The hyperbolic functions vary depending on the relative positions and whether these are identical or opposite couplers, and the efficiencies of each coupler depend on the type of water, such as seawater and tap water. The design method was demonstrated and achieved the highest efficiencies of 95.2%, 91.5%, and 85.3% in tap water at transfer distances of 20, 50, and 100 mm, respectively.

  • Precoder Optimization Using Data Correlation for Wireless Data Aggregation

    Ayano NAKAI-KASAI  Naoyuki HAYASHI  Tadashi WADAYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E107-B No:3
      Page(s):
    330-338

    In this paper, we consider precoder design for wireless data aggregation in sensor networks. The precoder optimization problem can be formulated as minimization of mean squared error under transmit power and block diagonal constraints. We include statistical correlation of data into the optimization problem, which is appeared in typical applications but is ignored in conventional designing methods. We propose precoder optimization algorithms based on projected gradient descent with projection onto the constraint sets. The proposed method can achieve better performance than the conventional methods that do not incorporate data correlation, especially when data are highly correlated. We also extend the proposed approach to the context of over-the-air computation.

  • Capacitive Wireless Power Transfer System with Misalignment Tolerance in Flowing Freshwater Environments

    Yasumasa NAKA  Akihiko ISHIWATA  Masaya TAMURA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/08/01
      Vol:
    E107-C No:2
      Page(s):
    47-56

    The misalignment of a coupler is a significant issue for capacitive wireless power transfer (WPT). This paper presents a capacitive WPT system specifically designed for underwater drones operating in flowing freshwater environments. The primary design features include a capacitive coupler with an opposite relative position between feeding and receiving points on the coupler electrode, two phase compensation circuits, and a load-independent inverter. A stable and energy-efficient power transmission is achieved by maintaining a 90° phase difference on the coupler electrode in dielectrics with a large unloaded quality factor (Q factor), such as in freshwater. Although a 622-mm coupler electrode is required at 13.56MHz, the phase compensation circuits can reduce to 250mm as one example, which is mountable to small underwater drones. Furthermore, the electricity waste is automatically reduced using the constant-current (CC) output inverter in the event of misalignment where efficiency drops occur. Finally, their functions are simulated and demonstrated at various receiver positions and transfer distances in tap water.

  • An Adaptive Energy-Efficient Uneven Clustering Routing Protocol for WSNs

    Mingyu LI  Jihang YIN  Yonggang XU  Gang HUA  Nian XU  

     
    PAPER-Network

      Vol:
    E107-B No:2
      Page(s):
    296-308

    Aiming at the problem of “energy hole” caused by random distribution of nodes in large-scale wireless sensor networks (WSNs), this paper proposes an adaptive energy-efficient balanced uneven clustering routing protocol (AEBUC) for WSNs. The competition radius is adaptively adjusted based on the node density and the distance from candidate cluster head (CH) to base station (BS) to achieve scale-controlled adaptive optimal clustering; in candidate CHs, the energy relative density and candidate CH relative density are comprehensively considered to achieve dynamic CH selection. In the inter-cluster communication, based on the principle of energy balance, the relay communication cost function is established and combined with the minimum spanning tree method to realize the optimized inter-cluster multi-hop routing, forming an efficient communication routing tree. The experimental results show that the protocol effectively saves network energy, significantly extends network lifetime, and better solves the “energy hole” problem.

  • An Output Voltage Estimation and Regulation System Using Only the Primary-Side Electrical Parameters for Wireless Power Transfer Circuits

    Takahiro FUJITA  Kazuyuki WADA  Kawori SEKINE  

     
    PAPER

      Pubricized:
    2023/07/24
      Vol:
    E107-A No:1
      Page(s):
    16-24

    An output voltage estimation and regulation system for a wireless power transfer (WPT) circuit is proposed. Since the fluctuation of a coupling condition and/or a load may vary the voltage supplied with WPT resulting in a malfunction of wireless-powered devices, the output voltage regulation is needed. If the output voltage is regulated by a voltage regulator in a secondary side of the WPT circuit with fixed input power, the voltage regulator wastes the power to regulate the voltage. Therefore the output voltage regulation using a primary-side control, which adjusts the input power depending on the load and/or the coupling condition, is a promising approach for efficient regulation. In addition, it is desirable to eliminate feedback loop from the secondary side to the primary side from the viewpoint of reducing power dissipation and system complexity. The proposed system can estimate and regulate the output voltage independent of both the coupling and the load variation without the feedback loop. An usable range of the coupling coefficient and the load is improved compared to previous works. The validity of the proposed system is confirmed by the SPICE simulator.

  • A New Method to Compute Sequence Correlations Over Finite Fields

    Serdar BOZTAŞ  Ferruh ÖZBUDAK  Eda TEKİN  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/08/10
      Vol:
    E106-A No:12
      Page(s):
    1461-1469

    In this paper we obtain a new method to compute the correlation values of two arbitrary sequences defined by a mapping from F4n to F4. We apply this method to demonstrate that the usual nonbinary maximal length sequences have almost ideal correlation under the canonical complex correlation definition and investigate some decimations giving good cross correlation. The techniques we develop are of independent interest for future investigation of sequence design and related problems, including Boolean functions.

  • A Unified Software and Hardware Platform for Machine Learning Aided Wireless Systems

    Dody ICHWANA PUTRA  Muhammad HARRY BINTANG PRATAMA  Ryotaro ISSHIKI  Yuhei NAGAO  Leonardo LANANTE JR  Hiroshi OCHI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/08/22
      Vol:
    E106-A No:12
      Page(s):
    1493-1503

    This paper presents a unified software and hardware wireless AI platform (USHWAP) for developing and evaluating machine learning in wireless systems. The platform integrates multi-software development such as MATLAB and Python with hardware platforms like FPGA and SDR, allowing for flexible and scalable device and edge computing application development. The USHWAP is implemented and validated using FPGAs and SDRs. Wireless signal classification, wireless LAN sensing, and rate adaptation are used as examples to showcase the platform's capabilities. The platform enables versatile development, including software simulation and real-time hardware implementation, offering flexibility and scalability for multiple applications. It is intended to be used by wireless-AI researchers to develop and evaluate intelligent algorithms in a laboratory environment.

  • Minimization of Energy Consumption in TDMA-Based Wireless-Powered Multi-Access Edge Computing Networks

    Xi CHEN  Guodong JIANG  Kaikai CHI  Shubin ZHANG  Gang CHEN  Jiang LIU  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2023/06/19
      Vol:
    E106-A No:12
      Page(s):
    1544-1554

    Many nodes in Internet of Things (IoT) rely on batteries for power. Additionally, the demand for executing compute-intensive and latency-sensitive tasks is increasing for IoT nodes. In some practical scenarios, the computation tasks of WDs have the non-separable characteristic, that is, binary offloading strategies should be used. In this paper, we focus on the design of an efficient binary offloading algorithm that minimizes system energy consumption (EC) for TDMA-based wireless-powered multi-access edge computing networks, where WDs either compute tasks locally or offload them to hybrid access points (H-APs). We formulate the EC minimization problem which is a non-convex problem and decompose it into a master problem optimizing binary offloading decision and a subproblem optimizing WPT duration and task offloading transmission durations. For the master problem, a DRL based method is applied to obtain the near-optimal offloading decision. For the subproblem, we firstly consider the scenario where the nodes do not have completion time constraints and obtain the optimal analytical solution. Then we consider the scenario with the constraints. By jointly using the Golden Section Method and bisection method, the optimal solution can be obtained due to the convexity of the constraint function. Simulation results show that the proposed offloading algorithm based on DRL can achieve the near-minimal EC.

  • Stackelberg Game for Wireless-Powered Relays Assisted Batteryless IoT Networks

    Yanming CHEN  Bin LYU  Zhen YANG  Fei LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/08/10
      Vol:
    E106-B No:12
      Page(s):
    1479-1490

    In this paper, we investigate a wireless-powered relays assisted batteryless IoT network based on the non-linear energy harvesting model, where there exists an energy service provider constituted by the hybrid access point (HAP) and an IoT service provider constituted by multiple clusters. The HAP provides energy signals to the batteryless devices for information backscattering and the wireless-powered relays for energy harvesting. The relays are deployed to assist the batteryless devices with the information transmission to the HAP by using the harvested energy. To model the energy interactions between the energy service provider and IoT service provider, we propose a Stackelberg game based framework. We aim to maximize the respective utility values of the two providers. Since the utility maximization problem of the IoT service provider is non-convex, we employ the fractional programming theory and propose a block coordinate descent (BCD) based algorithm with successive convex approximation (SCA) and semi-definite relaxation (SDR) techniques to solve it. Numerical simulation results confirm that compared to the benchmark schemes, our proposed scheme can achieve larger utility values for both the energy service provider and IoT service provider.

  • Machine Learning-Based Compensation Methods for Weight Matrices of SVD-MIMO Open Access

    Kiminobu MAKINO  Takayuki NAKAGAWA  Naohiko IAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:12
      Page(s):
    1441-1454

    This paper proposes and evaluates machine learning (ML)-based compensation methods for the transmit (Tx) weight matrices of actual singular value decomposition (SVD)-multiple-input and multiple-output (MIMO) transmissions. These methods train ML models and compensate the Tx weight matrices by using a large amount of training data created from statistical distributions. Moreover, this paper proposes simplified channel metrics based on the channel quality of actual SVD-MIMO transmissions to evaluate compensation performance. The optimal parameters are determined from many ML parameters by using the metrics, and the metrics for this determination are evaluated. Finally, a comprehensive computer simulation shows that the optimal parameters improve performance by up to 7.0dB compared with the conventional method.

  • Energy-Efficient One-to-One and Many-to-One Concurrent Transmission for Wireless Sensor Networks

    SenSong HE  Ying QIU  

     
    LETTER-Information Network

      Pubricized:
    2023/09/19
      Vol:
    E106-D No:12
      Page(s):
    2107-2111

    Recent studies have shown that concurrent transmission with precise time synchronization enables reliable and efficient flooding for wireless networks. However, most of them require all nodes in the network to forward packets a fixed number of times to reach the destination, which leads to unnecessary energy consumption in both one-to-one and many-to-one communication scenarios. In this letter, we propose G1M address this issue by reducing redundant packet forwarding in concurrent transmissions. The evaluation of G1M shows that compared with LWB, the average energy consumption of one-to-one and many-to-one transmission is reduced by 37.89% and 25%, respectively.

  • Overloaded MIMO Bi-Directional Communication with Physical Layer Network Coding in Heterogeneous Multihop Networks Open Access

    Satoshi DENNO  Tomoya TANIKAWA  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1228-1236

    This paper proposes overloaded multiple input multiple output (MIMO) bi-directional communication with physical layer network coding (PLNC) to enhance the transmission speed in heterogeneous wireless multihop networks where the number of antennas on the relay is less than that on the terminals. The proposed overloaded MIMO communication system applies precoding and relay filtering to reduce computational complexity in spite of the transmission speed. An eigenvector-based filter is proposed for the relay filter. Furthermore, we propose a technique to select the best filter among candidates eigenvector-based filters. The performance of the proposed overloaded MIMO bi-directional communication is evaluated by computer simulation in a heterogeneous wireless 2-hop network. The proposed filter selection technique attains a gain of about 1.5dB at the BER of 10-5 in a 2-hop network where 2 antennas and 4 antennas are placed on the relay and the terminal, respectively. This paper shows that 6 stream spatial multiplexing is made possible in the system with 2 antennas on the relay.

  • Class-E Synchronous RF Rectifier: Circuit Formulation, Geodesic Trajectory, Time-Domain Simulation, and Prototype Experiment

    Ryoya HONDA  Minoru MIZUTANI  Masaya TAMURA  Takashi OHIRA  

     
    PAPER

      Pubricized:
    2023/05/10
      Vol:
    E106-C No:11
      Page(s):
    698-706

    This paper formulates a class-E synchronous RF rectifier from a new viewpoint. The key point is to introduce a matrix and convolute the DC terms into RF matrices. The explicit expression of input impedance is demonstrated in plane geometry. We find out their input impedance exhibits a geodesic arc in hyperbolic geometry under ZVS operation, where the theoretical RF-DC conversion efficiency results in 100%. We verify the developed theory both numerically (circuit simulation) and experimentally (6.78MHz, 100W). We confirm that the input impedance becomes a geodesic arc for a wide range of DC load resistance. The presented theory is quite elegant since it is based on a matrix-based formulation and plane-geometrical expression.

  • 300-GHz-Band Diplexer for Frequency-Division Multiplexed Wireless Communication

    Yuma KAWAMOTO  Toki YOSHIOKA  Norihiko SHIBATA  Daniel HEADLAND  Masayuki FUJITA  Ryo KOMA  Ryo IGARASHI  Kazutaka HARA  Jun-ichi KANI  Tadao NAGATSUMA  

     
    BRIEF PAPER

      Pubricized:
    2023/04/19
      Vol:
    E106-C No:11
      Page(s):
    722-726

    We propose a novel silicon diplexer integrated with filters for frequency-division multiplexing in the 300-GHz band. The diplexer consists of a directional coupler formed of unclad silicon wires, a photonic bandgap-based low-pass filter, and a high-pass filter based on frequency-dependent bending loss. These integrated filters are capable of suppressing crosstalk and providing >15dB isolation over 40GHz, which is highly beneficial for terahertz-range wireless communications applications. We have used this diplexer in a simultaneous error-free wireless transmission of 300-GHz and 335-GHz channels at the aggregate data rate of 36Gbit/s.

  • Theoretical Analysis of Fully Wireless-Power-Transfer Node Networks Open Access

    Hiroshi SAITO  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/05/10
      Vol:
    E106-B No:10
      Page(s):
    864-872

    The performance of a fully wireless-power-transfer (WPT) node network, in which each node transfers (and receives) energy through a wireless channel when it has sufficient (and insufficient) energy in its battery, was theoretically analyzed. The lost job ratio (LJR), namely, is the ratio of (i) the amount of jobs that cannot be done due to battery of a node running out to (ii) the amount of jobs that should be done, is used as a performance metric. It describes the effect of the battery of each node running out and how much additional energy is needed. Although it is known that WPT can reduce the probability of the battery running out among a few nodes within a small area, the performance of a fully WPT network has not been clarified. By using stochastic geometry and first-passage-time analysis for a diffusion process, the expected LJR was theoretically derived. Numerical examples demonstrate that the key parameters determining the performance of the network are node density, threshold switching of statuses between “transferring energy” and “receiving energy,” and the parameters of power conversion. They also demonstrate the followings: (1) The mean energy stored in the node battery decreases in the networks because of the loss caused by WPT, and a fully WPT network cannot decrease the probability of the battery running out under the current WPT efficiency. (2) When the saturation value of power conversion increases, a fully WPT network can decrease the probability of the battery running out although the mean energy stored in the node battery still decreases in the networks. This result is explained by the fact that the variance of stored energy in each node battery becomes smaller due to transfer of energy from nodes of sufficient energy to nodes of insufficient energy.

  • Experimental Evaluation of 920 MHz Band Air-to-Ground Radio Wave Propagation in Mountainous Areas

    Tekkan OKUDA  Hiraku OKADA  Chedlia BEN NAILA  Masaaki KATAYAMA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/04/24
      Vol:
    E106-B No:10
      Page(s):
    949-958

    In this study, aiming at clarifying the characteristics of air-to-ground radio wave propagation in mountainous areas, a transmission experiment was performed between a drone equipped with a transmitter and three receivers set up on the ground using a 920MHz band wireless system at Uchigatani forest, which is located in Yamato-cho, Gujo-shi, Gifu Prefecture. In the experiment, we simultaneously measured the received signal strength indicator (RSSI) and the drone's latitude, longitude, and height from the ground. Then, we verified whether the measured data has the line-of-sight between the transmitter and receivers using a geographic information system and analyzed characteristics of the RSSI, packet loss rate, and fading concerning the height from the ground and distance between the transmitter and receivers. The results showed that increasing the drone's altitude to 90m or more makes the link more stable and that the fading distribution in mountainous terrains is different from in other terrains.

1-20hit(1294hit)