The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yonggang XU(2hit)

1-2hit
  • Threshold Based D-SCFlip Decoding of Polar Codes

    Desheng WANG  Jihang YIN  Yonggang XU  Xuan YANG  Gang HUA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/02/06
      Vol:
    E106-B No:8
      Page(s):
    635-644

    The decoders, which improve the error-correction performance by finding and correcting the error bits caused by channel noise, are a hotspot for polar codes. In this paper, we present a threshold based D-SCFlip (TD-SCFlip) decoder with two improvements based on the D-SCFlip decoder. First, we propose the LLR fidelity criterion to define the LLR threshold and investigate confidence probability to calculate the LLR threshold indirectly. The information bits whose LLR values are smaller than the LLR threshold will be excluded from the range of candidate bits, which reduces the complexity of constructing the flip-bits list without the loss of error-correction performance. Second, we improve the calculation method for flip-bits metric with two perturbation parameters, which locates the channel-induced error bits faster, thus improving the error-correction performance. Then, TD-SCFlip-ω decoder is also proposed, which is limited to correcting up to ω bits in each extra decoding attempt. Simulation results show that the TD-SCFlip decoding is slightly better than the D-SCFlip decoding in terms of error-correction performance and decoding complexity, while the error-correction performance of TD-SCFlip-ω decoding is comparable to that of D-SCFlip-ω decoding but with lower decoding complexity.

  • An Adaptive Energy-Efficient Uneven Clustering Routing Protocol for WSNs

    Mingyu LI  Jihang YIN  Yonggang XU  Gang HUA  Nian XU  

     
    PAPER-Network

      Vol:
    E107-B No:2
      Page(s):
    296-308

    Aiming at the problem of “energy hole” caused by random distribution of nodes in large-scale wireless sensor networks (WSNs), this paper proposes an adaptive energy-efficient balanced uneven clustering routing protocol (AEBUC) for WSNs. The competition radius is adaptively adjusted based on the node density and the distance from candidate cluster head (CH) to base station (BS) to achieve scale-controlled adaptive optimal clustering; in candidate CHs, the energy relative density and candidate CH relative density are comprehensively considered to achieve dynamic CH selection. In the inter-cluster communication, based on the principle of energy balance, the relay communication cost function is established and combined with the minimum spanning tree method to realize the optimized inter-cluster multi-hop routing, forming an efficient communication routing tree. The experimental results show that the protocol effectively saves network energy, significantly extends network lifetime, and better solves the “energy hole” problem.