The search functionality is under construction.

Keyword Search Result

[Keyword] wireless(1294hit)

161-180hit(1294hit)

  • A Transmission Control Protocol for Long Distance High-Speed Wireless Communications

    Yohei HASEGAWA  Jiro KATTO  

     
    PAPER-Network

      Pubricized:
    2017/10/17
      Vol:
    E101-B No:4
      Page(s):
    1045-1054

    This paper proposes a transmission control protocol (TCP) for long distance high-speed wireless communications, including free-space optical communications (FSOC). Extreme high frequency of wireless communications enables high-speed bit rate, but frequent signal error, including burst error, can be a quite severe problem for ordinary high-speed TCPs. To achieve 10Gbps or higher data transfer throughput on FSOC, the proposed TCP (designated “TCP-FSO”) has improved and new features including multi-layer congestion control, retransmission control with packet loss point estimation, delay-based ACK congestion control, and ACK retransmission control. We evaluated data transfer throughput of TCP-FSO and the other TCPs, by throughput model analysis and experiment on real implementation. Obtained results show that TCP-FSO achieves far higher data transfer throughput than other high-speed TCPs. For example, it achieved a thousand times higher throughput than the other high-speed TCPs in a real FSOC environment.

  • Harvest-Then-Transceive: Throughput Maximization in Full-Duplex Wireless-Powered Communication Networks

    KyungRak LEE  SungRyung CHO  JaeWon LEE  Inwhee JOE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/09/29
      Vol:
    E101-B No:4
      Page(s):
    1128-1141

    This paper proposes the mesh-topology based wireless-powered communication network (MT-WPCN), which consists of a hybrid-access point (H-AP) and nodes. The H-AP broadcasts energy to all nodes by wireless, and the nodes harvest the energy and then communicate with other nodes including the H-AP. For the communication in the MT-WPCN, we propose the harvest-then-transceive protocol to ensure that the nodes can harvest energy from the H-AP and transmit information selectively to the H-AP or other nodes, which is not supported in most protocols proposed for the conventional WPCN. In the proposed protocol, we consider that the energy harvesting can be interrupted at nodes, since the nodes cannot harvest energy during transmission or reception. We also consider that the harvested energy is consumed by the reception of information from other nodes. In addition, the energy reservation model is required to guarantee the QoS, which reserves the infimum energy to receive information reliably by the transmission power control. Under these considerations, first, we design the half harvest-then-transceive protocol, which indicates that a node transmits information only to other nodes which do not transmit information yet, for investing the effect of the energy harvesting interruption. Secondly, we also design the full harvest-then-transceive protocol for the information exchange among nodes and compatibility with the conventional star-topology based WPCN, which indicates that a node can transmit information to any network unit, i.e., the H-AP and all nodes. We study the sum-throughput maximization in the MT-WPCN based on the half and full harvest-then-transceive protocols, respectively. Furthermore, the amount of harvested energy is analytically compared according to the energy harvesting interruption in the protocols. Simulation results show that the proposed MT-WPCN outperforms the conventional star-topology based WPCN in terms of the sum-throughput maximization, when wireless information transmission among nodes occurs frequently.

  • Non-Orthogonal Multiple Access in Wireless Powered Communication Networks with SIC Constraints

    Bin LYU  Zhen YANG  Guan GUI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/09/29
      Vol:
    E101-B No:4
      Page(s):
    1094-1101

    This paper studies a wireless powered communication network (WPCN) with non-orthogonal multiple access (NOMA) under successive interference cancellation (SIC) constraints, where the users first harvest energy from the power station and then transmit data to the information receiver simultaneously. Under this setup, we investigate the system throughput maximization problem. We first formulate an optimization problem for a general case, which is non-convex. To derive the optimal solution, new variables are introduced to transform the initial problem into a convex optimization problem. For a special case, i.e., two-user case, the optimal solution is derived as a closed-form expression. Simulations on the effect of SIC constraints show the importance of the distinctness among users' channels for the proposed model.

  • Efficient Query Dissemination Scheme for Wireless Heterogeneous Sensor Networks

    Sungjun KIM  Daehee KIM  Sunshin AN  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:3
      Page(s):
    649-653

    In this paper, we define a wireless sensor network with multiple types of sensors as a wireless heterogeneous sensor network (WHSN), and propose an efficient query dissemination scheme (EDT) in the WHSN. The EDT based on total dominant pruning can forward queries to only the nodes with data requested by the user, thereby reducing unnecessary packet transmission. We show that the EDT is suitable for the WHSN environment through a variety of simulations.

  • Cost- and Energy-Aware Multi-Flow Mobile Data Offloading Using Markov Decision Process

    Cheng ZHANG  Bo GU  Zhi LIU  Kyoko YAMORI  Yoshiaki TANAKA  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    657-666

    With the rapid increase in demand for mobile data, mobile network operators are trying to expand wireless network capacity by deploying wireless local area network (LAN) hotspots on which they can offload their mobile traffic. However, these network-centric methods usually do not fulfill the interests of mobile users (MUs). Taking into consideration many issues, MUs should be able to decide whether to offload their traffic to a complementary wireless LAN. Our previous work studied single-flow wireless LAN offloading from a MU's perspective by considering delay-tolerance of traffic, monetary cost and energy consumption. In this paper, we study the multi-flow mobile data offloading problem from a MU's perspective in which a MU has multiple applications to download data simultaneously from remote servers, and different applications' data have different deadlines. We formulate the wireless LAN offloading problem as a finite-horizon discrete-time Markov decision process (MDP) and establish an optimal policy by a dynamic programming based algorithm. Since the time complexity of the dynamic programming based offloading algorithm is still high, we propose a low time complexity heuristic offloading algorithm with performance sacrifice. Extensive simulations are conducted to validate our proposed offloading algorithms.

  • Zone-Based Energy Aware Data Collection Protocol for WSNs

    Alberto GALLEGOS  Taku NOGUCHI  Tomoko IZUMI  Yoshio NAKATANI  

     
    PAPER-Network

      Pubricized:
    2017/08/28
      Vol:
    E101-B No:3
      Page(s):
    750-762

    In this paper we propose the Zone-based Energy Aware data coLlection (ZEAL) protocol. ZEAL is designed to be used in agricultural applications for wireless sensor networks. In these type of applications, all data is often routed to a single point (named “sink” in sensor networks). The overuse of the same routes quickly depletes the energy of the nodes closer to the sink. In order to minimize this problem, ZEAL automatically creates zones (groups of nodes) independent from each other based on the trajectory of one or more mobile sinks. In this approach the sinks collects data queued in sub-sinks in each zone. Unlike existing protocols, ZEAL accomplish its routing tasks without using GPS modules for location awareness or synchronization mechanisms. Additionally, ZEAL provides an energy saving mechanism on the network layer that puts zones to sleep when there are no mobile sinks nearby. To evaluate ZEAL, it is compared with the Maximum Amount Shortest Path (MASP) protocol. Our simulations using the ns-3 network simulator show that ZEAL is able to collect a larger number of packets with significantly less energy in the same amount of time.

  • A Novel Low-Overhead Channel Sounding Protocol for Downlink Multi-User MIMO in IEEE 802.11ax WLAN Open Access

    Toshihisa NABETANI  Narendar MADHAVAN  Hiroki MORI  Tsuguhide AOKI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/09/15
      Vol:
    E101-B No:3
      Page(s):
    924-932

    The next generation wireless LAN standard IEEE 802.11ax aims to provide improved throughput performance in dense environments. We have proposed an efficient channel sounding mechanism for DL-MU-MIMO that has been adopted as a new sounding protocol in the 802.11ax standard. In this paper, we evaluate the overhead reduction in the 802.11ax sounding protocol compared with the 802.11ac sounding protocol. Sounding is frequently performed to obtain accurate channel information from the associated stations in order to improve overall system throughput. However, there is a trade-off between accurate channel information and the overhead incurred due to frequent sounding. Therefore, the sounding interval is an important factor that determines system throughput in DL-MU-MIMO transmission. We also evaluate the effect of sounding interval on the system throughput performance using both sounding protocols and provide a comparative analysis of the performance improvement.

  • An Efficient Energy-Aware and Game-Theory-Based Clustering Protocol for Wireless Sensor Networks

    Xuegang WU  Xiaoping ZENG  Bin FANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/08/29
      Vol:
    E101-B No:3
      Page(s):
    709-722

    Clustering is known to be an effective means of reducing energy dissipation and prolonging network lifetime in wireless sensor networks (WSNs). Recently, game theory has been used to search for optimal solutions to clustering problems. The residual energy of each node is vital to balance a WSN, but was not used in the previous game-theory-based studies when calculating the final probability of being a cluster head. Furthermore, the node payoffs have also not been expressed in terms of energy consumption. To address these issues, the final probability of being a cluster head is determined by both the equilibrium probability in a game and a node residual energy-dependent exponential function. In the process of computing the equilibrium probability, new payoff definitions related to energy consumption are adopted. In order to further reduce the energy consumption, an assistant method is proposed, in which the candidate nodes with the most residual energy in the close point pairs completely covered by other neighboring sensors are firstly selected and then transmit same sensing data to the corresponding cluster heads. In this paper, we propose an efficient energy-aware clustering protocol based on game theory for WSNs. Although only game-based method can perform well in this paper, the protocol of the cooperation with both two methods exceeds previous by a big margin in terms of network lifetime in a series of experiments.

  • A Highly Adaptive Lossless ECG Compression ASIC for Wireless Sensors Based on Hybrid Gomlomb Coding

    Jiahui LUO  Zhijian CHEN  Xiaoyan XIANG  Jianyi MENG  

     
    LETTER-Computer System

      Pubricized:
    2017/12/14
      Vol:
    E101-D No:3
      Page(s):
    791-794

    This work presents a low-complexity lossless electrocardiogram (ECG) compression ASIC for wireless sensors. Three linear predictors aiming for different signal characteristics are provided for prediction based on a history table that records of the optimum predictors for recent samples. And unlike traditional methods using a unified encoder, the prediction error is encoded by a hybrid Golomb encoder combining Exp-Golomb and Golomb-Rice and can adaptively configure the encoding scheme according to the predictor selection. The novel adaptive prediction and encoding scheme contributes to a compression rate of 2.77 for the MIT-BIH Arrhythmia database. Implemented in 40nm CMOS process, the design takes a small gate count of 1.82K with 37.6nW power consumption under 0.9V supply voltage.

  • A Fuzzy Rule-Based Key Redistribution Method for Improving Security in Wireless Sensor Networks

    Jae Kwan LEE  Tae Ho CHO  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/07/27
      Vol:
    E101-B No:2
      Page(s):
    489-499

    Wireless Sensor Networks (WSNs) are randomly deployed in a hostile environment and left unattended. These networks are composed of small auto mouse sensor devices which can monitor target information and send it to the Base Station (BS) for action. The sensor nodes can easily be compromised by an adversary and the compromised nodes can be used to inject false vote or false report attacks. To counter these two kinds of attacks, the Probabilistic Voting-based Filtering Scheme (PVFS) was proposed by Li and Wu, which consists of three phases; 1) Key Initialization and assignment, 2) Report generation, and 3) En-route filtering. This scheme can be a successful countermeasure against these attacks, however, when one or more nodes are compromised, the re-distribution of keys is not handled. Therefore, after a sensor node or Cluster Head (CH) is compromised, the detection power and effectiveness of PVFS is reduced. This also results in adverse effects on the sensor network's lifetime. In this paper, we propose a Fuzzy Rule-based Key Redistribution Method (FRKM) to address the limitations of the PVFS. The experimental results confirm the effectiveness of the proposed method by improving the detection power by up to 13.75% when the key-redistribution period is not fixed. Moreover, the proposed method achieves an energy improvement of up to 9.2% over PVFS.

  • RSSI-Based Localization Using Wireless Beacon with Three-Element Array

    Ryota TAZAWA  Naoki HONMA  Atsushi MIURA  Hiroto MINAMIZAWA  

     
    PAPER-DOA Estimation

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    400-408

    In this paper, we propose an indoor localization method that uses only the Received Signal Strength Indicator (RSSI) of signals transmitted from wireless beacons. The beacons use three-element array antennas, and the position of the receiving terminal is estimated by using multiple DOD information. Each beacon transmits four beacon signals with different directivities by feeding signals to the three-element array antennas via 180-degree and 90-degree hybrids. The correlation matrix of the propagation channels is estimated from just the strength of the signals, and the DOD is estimated from the calculated correlation matrix. For determining the location of the receiving terminal, the existence probability function is introduced. Experiments show that the proposed method attains lower position estimation error than the conventional method.

  • CSI Feedback Reduction Method for Downlink Multiuser MIMO Transmission Using Dense Distributed Antenna Selection

    Tomoki MURAKAMI  Koichi ISHIHARA  Yasushi TAKATORI  Masato MIZOGUCHI  Kentaro NISHIMORI  

     
    PAPER-MIMO

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    426-433

    This paper proposes a novel method of reducing channel state information (CSI) feedback by using transmit antenna selection for downlink multiuser multiple input multiple output (DL-MU-MIMO) transmission in dense distributed antenna systems. It is widely known that DL-MU-MIMO transmission achieves higher total bit-rate by mitigating inter-user interference based on pre-coding techniques. The pre-coding techniques require CSI between access point (AP) and multiple users. However, overhead for CSI acquisition degrades the transmission efficiency of DL-MU-MIMO transmission. In the proposed CSI feedback reduction method, AP first selects the antenna set that maximizes the received power at each user, second it skips the sequence of CSI feedback for users whose signal to interference power ratio is larger than a threshold, and finally it performs DL-MU-MIMO transmission to multiple users by using the selected antenna set. To clarify the proposed method, we evaluate it by computer simulations in an indoor scenario. The results show that the proposed method can offer higher transmission efficiency than the conventional DL-MU-MIMO transmission with the usual CSI feedback method.

  • Far-End Reactor Matching to a Traveling Load Along an RF Power Transmission Line

    Sonshu SAKIHARA  Satoshi KITABAYASHI  Naoki SAKAI  Takashi OHIRA  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    396-401

    This paper presents a novel circuit for impedance matching to a load moving along a transmission line. This system is called FERMAT: Far-End Reactor MATching. The FERMAT consists of a power transmission line and a variable reactor at its far-end. The proposed system moves standing-wave antinodes to the position of the vehicle in motion. Therefore, the moving vehicle can be fed well at any position on the line. As a theoretical result, we derive adjustable matching conditions in FERMAT. We verified that the experimental result well agrees with the theory.

  • An Overview of China Millimeter-Wave Multiple Gigabit Wireless Local Area Network System Open Access

    Wei HONG  Shiwen HE  Haiming WANG  Guangqi YANG  Yongming HUANG  Jixing CHEN  Jianyi ZHOU  Xiaowei ZHU  Nianzhu ZHANG  Jianfeng ZHAI  Luxi YANG  Zhihao JIANG  Chao YU  

     
    INVITED PAPER

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    262-276

    This paper presents an overview of the advance of the China millimeter-wave multiple gigabit (CMMG) wireless local area network (WLAN) system which operates in the 45 GHz frequency band. The CMMG WLAN system adopts the multiple antennas technologies to support data rate up to 15Gbps. During the progress of CMMG WLAN standardization, some new key technologies were introduced to adapt the millimeter-wave characteristic, including the usage of the zero correlation zone (ZCZ) sequence, a novel lower density parity check code (LDPC)-based packet encoding, and multiple input multiple output (MIMO) single carrier transmission. Extensive numerical results and system prototype test are also given to validate the performance of the technologies adopted by CMMG WLAN system.

  • Receiver Performance Evaluation and Fading Duration Analysis for Concurrent Transmission

    Chun-Hao LIAO  Makoto SUZUKI  Hiroyuki MORIKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/07
      Vol:
    E101-B No:2
      Page(s):
    582-591

    Concurrent transmission (CT) is a revolutionary multi-hop protocol that significantly improves the MAC- and network-layer efficiency by allowing synchronized packet collisions. Although its superiority has been empirically verified, there is still a lack of studies on how the receiver survives such packet collisions, particularly in the presence of the carrier frequency offsets (CFO) between the transmitters. This work rectifies this omission by providing a comprehensive evaluation of the physical-layer receiver performance under CT, and a theoretical analysis on the fading duration of the beating effect resulting from the CFO. The main findings from our evaluations are the following points. (1) Beating significantly affects the receiver performance, and an error correcting mechanism is needed to combat the beating. (2) In IEEE 802.15.4 systems, the direct sequence spread spectrum (DSSS) plays such a role in combatting the beating. (3) However, due to the limited length of DSSS, the receiver still suffers from the beating if the fading duration is too long. (4) On the other hand, the basic M-ary FSK mode of IEEE 802.15.4g is vulnerable to CT due to the lack of error correcting mechanism. In view of the importance of the fading duration, we further theoretically derive the closed form of the average fading duration (AFD) of the beating under CT in terms of the transmitter number and the standard deviation of the CFO. Moreover, we prove that the receiver performance can be improved by having higher CFO deviations between the transmitters due to the shorter AFD. Finally, we estimate the AFD in the real system by actually measuring the CFO of a large number of sensor nodes.

  • Performance Evaluation of Variable Bandwidth Channel Allocation Scheme in Multiple Subcarrier Multiple Access

    Nitish RAJORIA  Hiromu KAMEI  Jin MITSUGI  Yuusuke KAWAKITA  Haruhisa ICHIKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/03
      Vol:
    E101-B No:2
      Page(s):
    564-572

    Multiple Subcarrier Multiple Access (MSMA) enables concurrent sensor data streamings from multiple wireless and batteryless sensors using the principle of subcarrier backscatter used extensively in passive RFID. Since the interference cancellation performance of MSMA depends on the Signal to Interference plus Noise Ratio of each subcarrier, the choice of channel allocation scheme is essential. Since the channel allocation is a combinatorial problem, obtaining the true optimal allocation requires a vast amount of examinations which is impracticable in a system where we have tens of sensor RF tags. It is particularly true when we have variable distance and variable bandwidth sensor RF tags. This paper proposes a channel allocation scheme in the variable distance and variable bandwidth MSMA system based on a newly introduced performance index, total contamination power, to prioritize indecision cases. The performance of the proposal is evaluated with existing methods in terms of average communication capacity and system fairness using MATLAB Monte Carlo simulation to reveal its advantage. The accuracy of the simulation is also verified with the result obtained from the brute force method.

  • Joint Information and Energy Packet Scheduling in Wireless Powered Sensor Network

    Sungbok LEE  Jaehyun PARK  Jonghyeok LEE  

     
    PAPER-Network

      Pubricized:
    2017/08/07
      Vol:
    E101-B No:2
      Page(s):
    520-527

    In this paper, we consider wireless powered sensor networks. In these networks, the energy access point (EAP) transmits the energy packets to the sensor nodes and then, the sensor nodes send their sensing data to the information access point (IAP) by exploiting the harvested energy. Because the sensor nodes have a limited information queue (data storage) and energy queue (battery), energy packet/data packet scheduling is important. Accordingly, to reduce the total energy required to support the associated sensor network and simultaneously avoid sensing data loss, the energy packet/data packet transmission periods are jointly optimized. Furthermore, analyses identify the optimal location of EAP which will yield energy-efficient wireless powered sensor networks. Through the computer simulations, the performance of the proposed packet scheduling and deployment policy is demonstrated.

  • Robust Secure Transmit Design for SWIPT System with Many Types of Wireless Users and Passive Eavesdropper

    Pham-Viet TUAN  Insoo KOO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    441-450

    This paper studies a simultaneous wireless information and power transfer (SWIPT) system in which the transmitter not only sends data and energy to many types of wireless users, such as multiple information decoding users, multiple hybrid power-splitting users (i.e., users with a power-splitting structure to receive both information and energy), and multiple energy harvesting users, but also prevents information from being intercepted by a passive eavesdropper. The transmitter is equipped with multiple antennas, whereas all users and the eavesdropper are assumed to be equipped with a single antenna. Since the transmitter does not have any channel state information (CSI) about the eavesdropper, artificial noise (AN) power is maximized to mask information as well as to interfere with the eavesdropper as much as possible. The non-convex optimization problem is formulated to minimize the transmit power satisfying all signal-to-interference-plus-noise (SINR) and harvested energy requirements for all users so that the remaining power for generating AN is maximized. With perfect CSI, a semidefinite relaxation (SDR) technique is applied, and the optimal solution is proven to be tight. With imperfect CSI, SDR and a Gaussian randomization algorithm are proposed to find the suboptimal solution. Finally, numerical performance with respect to the maximum SINR at the eavesdropper is determined by a Monte-Carlo simulation to compare the proposed AN scenario with a no-AN scenario, as well as to compare perfect CSI with imperfect CSI.

  • On Mitigating On-Off Attacks in Wireless Sensor Networks

    Zhe WEI  Fang WANG  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:1
      Page(s):
    298-301

    In wireless sensor networks, the on-off attacker nodes can present good behaviors and then opportunistically and selectively behave badly to compromise the network. Such misbehaving nodes are usually difficult to be spotted by the network system in a short term. To address this issue, in this study, we propose a reputation scheme to mitigate the on-off attack. In addition, a penalty module is properly designed so that the reputation scheme can effectively respond to the on-off misbehaviors and make such nodes quickly detected by the system, hence the minimization of their influence. We confirm the feasibility and effectiveness of the proposed scheme through simulation tests.

  • Scalable Distributed Video Coding for Wireless Video Sensor Networks

    Hong YANG  Linbo QING  Xiaohai HE  Shuhua XIONG  

     
    PAPER

      Pubricized:
    2017/10/16
      Vol:
    E101-D No:1
      Page(s):
    20-27

    Wireless video sensor networks address problems, such as low power consumption of sensor nodes, low computing capacity of nodes, and unstable channel bandwidth. To transmit video of distributed video coding in wireless video sensor networks, we propose an efficient scalable distributed video coding scheme. In this scheme, the scalable Wyner-Ziv frame is based on transmission of different wavelet information, while the Key frame is based on transmission of different residual information. A successive refinement of side information for the Wyner-Ziv and Key frames are proposed in this scheme. Test results show that both the Wyner-Ziv and Key frames have four layers in quality and bit-rate scalable, but no increase in complexity of the encoder.

161-180hit(1294hit)