Channel modeling is a vital step in designing transceivers for wireless implant communication systems due to the extremely challenging environment of the human body. In this paper, the in-to-on body path loss and group delay were first analyzed using an electric dipole and a current loop in the 10-60MHz human body communication band. A path loss model was derived using finite difference time domain (FDTD) simulation and an anatomical human body model. As a result, it was found that the path loss increases with distance in an exponent of 5.6 for dipole and 3.9 for loop, and the group delay variation is within 1ns for both dipole and loop which suggests a flat phase response. Moreover, the electric and magnetic field distributions revealed that the magnetic field components dominate in-body signal transmission in this frequency band. Based on the analysis results of the implant channel, the link budget was analyzed. An experiment on a prototype transceiver was also performed to validate the path loss model and bit error rate (BER) performance. The experimentally derived path loss exponent was between the electric dipole path loss exponent and the current loop path loss exponent, and the BER measurement showed the feasibility of 20Mbps implant communication up to a body depth of at least 15cm.
Md Ismail HAQUE
Nagoya Institute of Technology
Ryosuke YAMADA
Nagoya Institute of Technology
Jingjing SHI
Northeastern University
Jianqing WANG
Nagoya Institute of Technology
Daisuke ANZAI
Nagoya Institute of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Md Ismail HAQUE, Ryosuke YAMADA, Jingjing SHI, Jianqing WANG, Daisuke ANZAI, "Channel Characteristics and Link Budget Analysis for 10-60MHz Band Implant Communication" in IEICE TRANSACTIONS on Communications,
vol. E104-B, no. 4, pp. 410-418, April 2021, doi: 10.1587/transcom.2020EBP3075.
Abstract: Channel modeling is a vital step in designing transceivers for wireless implant communication systems due to the extremely challenging environment of the human body. In this paper, the in-to-on body path loss and group delay were first analyzed using an electric dipole and a current loop in the 10-60MHz human body communication band. A path loss model was derived using finite difference time domain (FDTD) simulation and an anatomical human body model. As a result, it was found that the path loss increases with distance in an exponent of 5.6 for dipole and 3.9 for loop, and the group delay variation is within 1ns for both dipole and loop which suggests a flat phase response. Moreover, the electric and magnetic field distributions revealed that the magnetic field components dominate in-body signal transmission in this frequency band. Based on the analysis results of the implant channel, the link budget was analyzed. An experiment on a prototype transceiver was also performed to validate the path loss model and bit error rate (BER) performance. The experimentally derived path loss exponent was between the electric dipole path loss exponent and the current loop path loss exponent, and the BER measurement showed the feasibility of 20Mbps implant communication up to a body depth of at least 15cm.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.2020EBP3075/_p
Copy
@ARTICLE{e104-b_4_410,
author={Md Ismail HAQUE, Ryosuke YAMADA, Jingjing SHI, Jianqing WANG, Daisuke ANZAI, },
journal={IEICE TRANSACTIONS on Communications},
title={Channel Characteristics and Link Budget Analysis for 10-60MHz Band Implant Communication},
year={2021},
volume={E104-B},
number={4},
pages={410-418},
abstract={Channel modeling is a vital step in designing transceivers for wireless implant communication systems due to the extremely challenging environment of the human body. In this paper, the in-to-on body path loss and group delay were first analyzed using an electric dipole and a current loop in the 10-60MHz human body communication band. A path loss model was derived using finite difference time domain (FDTD) simulation and an anatomical human body model. As a result, it was found that the path loss increases with distance in an exponent of 5.6 for dipole and 3.9 for loop, and the group delay variation is within 1ns for both dipole and loop which suggests a flat phase response. Moreover, the electric and magnetic field distributions revealed that the magnetic field components dominate in-body signal transmission in this frequency band. Based on the analysis results of the implant channel, the link budget was analyzed. An experiment on a prototype transceiver was also performed to validate the path loss model and bit error rate (BER) performance. The experimentally derived path loss exponent was between the electric dipole path loss exponent and the current loop path loss exponent, and the BER measurement showed the feasibility of 20Mbps implant communication up to a body depth of at least 15cm.},
keywords={},
doi={10.1587/transcom.2020EBP3075},
ISSN={1745-1345},
month={April},}
Copy
TY - JOUR
TI - Channel Characteristics and Link Budget Analysis for 10-60MHz Band Implant Communication
T2 - IEICE TRANSACTIONS on Communications
SP - 410
EP - 418
AU - Md Ismail HAQUE
AU - Ryosuke YAMADA
AU - Jingjing SHI
AU - Jianqing WANG
AU - Daisuke ANZAI
PY - 2021
DO - 10.1587/transcom.2020EBP3075
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E104-B
IS - 4
JA - IEICE TRANSACTIONS on Communications
Y1 - April 2021
AB - Channel modeling is a vital step in designing transceivers for wireless implant communication systems due to the extremely challenging environment of the human body. In this paper, the in-to-on body path loss and group delay were first analyzed using an electric dipole and a current loop in the 10-60MHz human body communication band. A path loss model was derived using finite difference time domain (FDTD) simulation and an anatomical human body model. As a result, it was found that the path loss increases with distance in an exponent of 5.6 for dipole and 3.9 for loop, and the group delay variation is within 1ns for both dipole and loop which suggests a flat phase response. Moreover, the electric and magnetic field distributions revealed that the magnetic field components dominate in-body signal transmission in this frequency band. Based on the analysis results of the implant channel, the link budget was analyzed. An experiment on a prototype transceiver was also performed to validate the path loss model and bit error rate (BER) performance. The experimentally derived path loss exponent was between the electric dipole path loss exponent and the current loop path loss exponent, and the BER measurement showed the feasibility of 20Mbps implant communication up to a body depth of at least 15cm.
ER -