The search functionality is under construction.

Keyword Search Result

[Keyword] group delay(16hit)

1-16hit
  • Channel Characteristics and Link Budget Analysis for 10-60MHz Band Implant Communication

    Md Ismail HAQUE  Ryosuke YAMADA  Jingjing SHI  Jianqing WANG  Daisuke ANZAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/10/15
      Vol:
    E104-B No:4
      Page(s):
    410-418

    Channel modeling is a vital step in designing transceivers for wireless implant communication systems due to the extremely challenging environment of the human body. In this paper, the in-to-on body path loss and group delay were first analyzed using an electric dipole and a current loop in the 10-60MHz human body communication band. A path loss model was derived using finite difference time domain (FDTD) simulation and an anatomical human body model. As a result, it was found that the path loss increases with distance in an exponent of 5.6 for dipole and 3.9 for loop, and the group delay variation is within 1ns for both dipole and loop which suggests a flat phase response. Moreover, the electric and magnetic field distributions revealed that the magnetic field components dominate in-body signal transmission in this frequency band. Based on the analysis results of the implant channel, the link budget was analyzed. An experiment on a prototype transceiver was also performed to validate the path loss model and bit error rate (BER) performance. The experimentally derived path loss exponent was between the electric dipole path loss exponent and the current loop path loss exponent, and the BER measurement showed the feasibility of 20Mbps implant communication up to a body depth of at least 15cm.

  • Embedded F-SIR Type Transmission Line with Open-Stub for Negative Group Delay Characteristic

    Yoshiki KAYANO  Hiroshi INOUE  

     
    BRIEF PAPER

      Vol:
    E99-C No:9
      Page(s):
    1023-1026

    Negative group delay characteristics can be used to improve signal-integrity performance such as equalizer for compensation of the group delay of transmission line (TL). This brief-paper newly attempts to propose a concept of the embedded Folded-Stepped Impedance Resonator (F-SIR) structure with open-stub resonator, for negative group delay and slope characteristics at high-frequency as well as low-insertion loss. The concept of the proposed TL is based on the combination of resonance and anti-resonance due to open-stub resonator in order to establish wideband negative group delay and negative slope characteristics. The proposed TL is fabricated on PCB, and then the concept is validated by measurement and simulation.

  • A Wide Range CMOS Power Amplifier with Improved Group Delay Variation and Gain Flatness for UWB Transmitters

    Rohana SAPAWI  Ramesh K. POKHAREL  Haruichi KANAYA  Keiji YOSHIDA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1182-1188

    This paper presents the design and implementation of 0.9–4.8 GHz CMOS power amplifier (PA) with improved group delay variation and gain flatness at the same time for UWB transmitters. This PA design employs a two-stage cascade common source topology, a resistive shunt feedback technique and inductive peaking to achieve high gain flatness, and good input matching. Based on theoretical analysis, the main design factor for group delay variation is identified. The measurement results indicate that the proposed PA design has an average gain of 10.2 ± 0.8 dB while maintaining a 3-dB bandwidth of 0.57 to 5.8 GHz, an input return loss |S11| less than -4.4 dB, and an output return loss |S22| less than -9.2 dB over the frequency range of interest. The input 1 dB compression point at 2 GHz was -9 dBm while consumes 30 mW power from 1.5 V supply voltage. Moreover, excellent phase linearity (i.e., group delay variation) of ±125 ps was achieved across the whole band.

  • A Robust Non-coherent Receiver for TR UWB with the Impact of Group Delay Ripple

    Yongnu JIN  Kyung Sup KWAK  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:6
      Page(s):
    1983-1989

    The impact of non-ideal delay line (DL) along with group delay ripple (GDR) on the performance of ultra wide bandwidth (UWB) system has not yet been studied in previous literatures. In this paper, according to the currently designed DLs, we propose a statistical GDR model to achieve a practical UWB DL, and investigate the degradation in average bit error rate (BER) caused by the GDR for the transmitted-reference (TR) UWB communication systems. According to the analysis results, an improved autocorrelation receiver (AcR) is proposed. Through Monte Carlo simulations, the great performance improvement of the proposed AcR is verified by comparing it with the conventional TR AcR under non-ideal DL conditions. The proposed receiver framework is simple enough to enable a tractable analysis, and provides valuable insights for designing a practical TR UWB AcR that experiences GDR.

  • UWB Active Balun Design with Small Group Delay Variation and Improved Return Loss

    Kyoung-Pyo AHN  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:5
      Page(s):
    905-908

    Different from distributed baluns, active baluns have group delay variations in the lower bands related to inherent internal capacitances and resistance in transistors. A negative group delay (NGD) circuit is employed as a compensator of group delay variation for an ultra-wideband (UWB) active balun. First, three-cell NGD circuit is inserted into a simple active balun circuit for realizing both group delay compensation and return loss improvement. The simulated results show a group delay variation of 4.8 ps and an input return loss of above 11.5 dB in the UWB band (3.1-10.6 GHz). Then, a pair of one-cell NGD circuits is added to reduce the remaining group delay variation (3.4 ps in simulation). The circuit with the NGD circuits was fabricated on an InGaP/GaAs HBT MMIC substrate. The measured results achieved a group delay variation of 7.7 ps, a gain variation of 0.5 dB, an input return loss of greater than 10 dB, and an output return loss of larger than 8.1 dB in the UWB band.

  • Left Hand Mode Transmission Line Characteristics Made by F-SIR Structure on PCB

    Ryosuke YANAGISAWA  Yoshiki KAYANO  Hiroshi INOUE  

     
    LETTER

      Vol:
    E93-B No:7
      Page(s):
    1855-1857

    Basic left hand mode transmission line (LH mode TL) characteristics made on PCB is an important future issue for the application of the EMC field. In this paper, possibility of a LH mode TL characteristic made by a folded-stepped impedance resonator (F-SIR) type is investigated experimentally and numerically. The experimental and calculated from FEM and equivalent circuit results indicate that some backward propagation characteristic and negative group delay can be established by F-SIR structure.

  • Synthesis for Negative Group Delay Circuits Using Distributed and Second-Order RC Circuit Configurations

    Kyoung-Pyo AHN  Ryo ISHIKAWA  Akira SAITOU  Kazuhiko HONJO  

     
    PAPER

      Vol:
    E92-C No:9
      Page(s):
    1176-1181

    This paper describes the characteristic of negative group delay (NGD) circuits for various configurations including first-order, distributed, and second-order RC circuit configurations. This study includes locus, magnitude, and phase characteristics of the NGD circuits. The simplest NGD circuit is available using first-order RC or RL configuration. As an example of distributed circuit configuration, it is verified that losses in a distributed line causes NGD characteristic at higher cut-off band of a coupled four-line bandpass filter. Also, novel wideband NGD circuits using second-order RC configuration, instead of conventional RLC configuration, are proposed. Adding a parallel resistor to a parallel-T filter enables NGD characteristic to it. Also, a Wien-Robinson bridge is modified to have NGD characteristic by controlling the voltage division ratio. They are fabricated on MMIC substrate, and their NGD characteristics are verified with measured results. They have larger insertion loss than multi-stage RLC NGD circuits, however they can realize second-order NGD characteristic without practical implementation of inductors.

  • Evolutionary Synthesis of Practical Filters with Improved Group Delay Response

    Hao-Sheng HOU  Hui-Min HUANG  

     
    LETTER-Electronic Circuits

      Vol:
    E91-C No:9
      Page(s):
    1520-1524

    In this letter, a genetic programming method is used to synthesize filters. In order to improve the group delay characteristics, we propose a novel two-stage fitness function reflecting not only the frequency response but also the group delay characteristics of the evolved filters. We also deal with two practical design considerations, i.e., the filters include parasitic effects and are composed of elements with discrete values. The proposed method is applied to low-pass filter design cases. The experimental results show the method can effectively generate filters satisfying the design considerations and possessing improved group delay characteristics when compared with traditional filters.

  • Effect of Group Delay in RF BPF on Impulse Radio Systems

    Seong-Sik MYOUNG  Bong-Su KWON  Young-Hwan KIM  Jong-Gwan YOOK  

     
    PAPER-Devices/Circuits for Communications

      Vol:
    E90-B No:12
      Page(s):
    3514-3522

    This paper presents an analysis of the effects of RF filter characteristics on the system performance of an impulse radio. The impulse radio system transmits modulated pulses having very short time duration. Information can be extracted in the receiver side based on the cross-correlation between received and reference pulses. Accordingly, the pulse distortion due to in-band group delay variation can cause serious degradation in system performance. In general, RF band pass filters inevitably cause non-uniform group delays to the signal passing through the filter that are proportional to its skirt characteristic due to its resonance phenomenon. In this work, a small signal scattering parameter, S21, which is a frequency domain parameter, and its Fourier transform are utilized to characterize the output pulse waveform under the condition that the input and output ports are matched. The output pulse waveform of the filter is predicted based on the convolution integral between the input pulse and filter transfer function, and the analysis result is compared with previously reported experimental result. The resulting bit error rate performances in a bi-phase modulation and a pulse position modulation based impulse radio system are also calculated. Moreover, improvement of system performance by the pulse shaping method, a potential solution for pulse waveform distortion, is analyzed.

  • Improvements in the Transient Response of Distributed Amplifiers

    Emad HAMIDI  Mahmoud MOHAMMAD-TAHERI  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E90-C No:10
      Page(s):
    2062-2066

    A new method is presented in order to improve the transient response of distributed amplifiers. The method is based on fitting the parameters of the distributed amplifier to those of a predesigned lowpass filter. Analytical expressions are derived to show the performance of the new structure. Three distributed amplifiers are designed based on the proposed method and it has been shown that the new method can significantly improve the transient response of the amplifier. It has been shown that the new method can improve the other characteristics of the distributed amplifier too. The effects of parasitic and lossy elements has also been considered and it has been shown that such effects doesn't violate the generality of the proposed theory.

  • A Compact Semi-Lumped Coplanar Waveguide Low-Pass Filter Fabricated on High Resistivity Silicon Substrate

    Cheng-Yuan HUNG  Ru-Yuan YANG  Min-Hang WENG  Yan-Kuin SU  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E90-C No:9
      Page(s):
    1837-1840

    In this letter, the fabrication of a compact and high performance semi-lumped coplanar waveguide low-pass filter (CPW-LPF) on high resistivity silicon (HRS) substrate at millimeter wave is proposed. The design procedure and the equivalent circuit of the proposed semi-lumped CPW-LPF is discussed. The filter structure of is very simple but its performances is fairly good. This designed filter at cutoff frequency fc of 31 GHz has very good measured characteristics including the low insertion loss, sharp rejection and low group delay, due to the reduced substrate loss of HRS. Experimental results of the fabricated filter show a good agreement with the predicted results.

  • Apodised Chirped Gratings Using Deep-Ridge Waveguides with Vertical-Groove Surface Gratings

    Jun MIYAZU  Toru SEGAWA  Shinji MATSUO  Tetsuyoshi ISHII  Hiroyuki SUZUKI  Yuzo YOSHIKUNI  

     
    LETTER-Optoelectronics

      Vol:
    E88-C No:7
      Page(s):
    1521-1522

    Apodised chirped gratings based on InGaAsP/InP deep-ridge waveguides with vertical-groove surface gratings were fabricated. Reflectivity ripple and group delay ripple were reduced from around 4 dB to 1 dB and from around 5 ps to 2 ps, respectively, by apodisation over a wavelength range of around 20 nm.

  • A New Method for Chromatic Dispersion Measurement of WDM Components Using Photonic Microwave Technique

    Xiaoke YI  Chao LU  Fang WEI  Wen De ZHONG  Yixin WANG  

     
    PAPER-Measurements Techniques

      Vol:
    E86-C No:7
      Page(s):
    1359-1365

    In the paper, we propose a new method for chromatic dispersion measurement of WDM components in both transmission and reflection, employing photonic microwave technology. The dispersion can be determined by measuring the frequency spectrum range change of the microwave notch filter. The method features the advantages of low-cost and simplicity. Experimental results demonstrate that our setup is capable of measuring relative group delay with better than 1 ps time resolution and the measurement results show a good agreement with that measured by the conventional phase-shift technique.

  • Design of Optical Video Transmission System for Fiber to the Home Employing Super Wide-Band FM Modulation Scheme

    Yoshikazu ISHII  Katsuya ODA  Kazuhiro NOJIMA  Hiroaki ASANO  Hidehiko NEGISHI  Seiho KITAJI  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E84-B No:11
      Page(s):
    2915-2923

    In this paper, we present a design for an optical video transmission system employing a super wide-band FM modulation scheme. We focus on the design of optical transmitters and receivers, especially a wide-band electrical-to-optical converter and optical-to-electrical converter. With this system, it is important to develop optical and microwave devices which have a wide frequency response combined with flat group delay characteristics in order to improve the quality of the video signals after transmission. We also analyze theoretically the hybrid transmission capacity of AM analog video signals and 64QAM signals for digital video and data, and show the FM modulation parameters needed to realize high quality transmission. An experimental evaluation shows that our designed optical transmitter and receiver achieve high quality for the various channel plans for AM/64QAM hybrid transmission. The system has high received optical sensitivity and a wide optical dynamic range, allowing it to distribute analog video, digital video, and Internet data to many users over a wide area.

  • Low Noise High-Gain Distributed Preamplifiers Using Cascaded Single Stage Distributed Amplifier Configurations

    Ben Y. BANYAMIN  Jia Yi LIANG  Colin S. AITCHISON  Michael BERWICK  

     
    PAPER-Active Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1039-1046

    In this paper 2-10 GHz hybrid-distributed preamplifiers using two and three cascaded single stage distributed amplifiers are demonstrated. These amplifiers produce available power gains significantly higher than conventional distributed preamplifiers using the same number of active devices. Simulation results show the advantage of the proposed preamplifier over the conventional one. Measured results of the two realised configurations of preamplifiers using two and three cascaded single stage distributed amplifiers are presented. Each configuration shows that the available power gain can be increased by increasing interstage characteristic impedance of the cascaded single stage distributed amplifiers. The measured available power gain for two stages shows an improvement from 18 dB to 20 dB, and for three stages an improvement from 26 dB to 31 dB across the 2-10 GHz frequency band, as the inter-stage characteristic impedance is increased from low to high level. Input and output return losses better than -10 dB, and input-output isolation better than -55 dB at the beginning of the band and better than -45 dB at the end are achieved. This approach also provides a good measured noise figure performance of an average of 4 dB across the 2-10 GHz frequency band for both two and three cascaded stages. The group delay of both cascaded amplifiers are measured. Its flat performance proves the viability of this approach which is suitable for digital optical communication and pulse applications.

  • Design of Circularly Symmetric Two-Dimensional R Lowpass Digital Filters With Constant Group Delay Using McClellan Transformations

    Kiyoshi NISHIKAWA  Russell M. MERSEREAU  

     
    PAPER-Design and Implementation of Multidimensional Digital Filters

      Vol:
    E75-A No:7
      Page(s):
    830-836

    We present a successful method for designing 2-D circularly symmetric R lowpass filters with constant group delay. The procedure is based on a transformation of a 1-D prototype R filter with constant group delay, whose magnitude response is the 2-D cross-sectional response. The 2-D filter transfer function has a separable denominator and a numerator which is obtained from the prototype numerator by means of a series of McClellan transformations whose free parameters can be optimized by successive procedure. The method is illustrated by an example.