The traditional spectrum auctions require a central auctioneer. Then, the secondary users (SUs) can bid for spectrum in multiple auction or sealed auction way. In this paper, we address the problem of distributed spectrum sharing in the cognitive networks where multiple owners sell their spare bands to multiple SUs. Each SU equips multi-interface/multi-radio, so that SU can buy spare bands from multiple owners. On the other hand, each owner can sell its spare bands to serval SUs. There are two questions to be addressed for such an environment: the first one is how to select bands/the owners for each SU; the second one is how to decide the competitive prices for the multiple owners and multiple SUs. To this end, we propose a two-side multi-band market game theoretic framework to jointly consider the benefits of all SUs and owners. The equilibrium concept in such games is named core. The outcomes in the core of the game cannot be improved upon by any subset of players. These outcomes correspond exactly to the price-lists that competitively balance the benefits of all SUs and owners. We show that the core in our model is always non-empty. When the measurement of price takes discrete value, the core of the game is defined as discrete core. The Dynamic Multi-band Sharing algorithm (DMS) is proposed to converge to the discrete core of the game. With small enough measurement unit of price, the algorithm can achieve the optimal performance compared with centralized one in terms of the system utility.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Dapeng LI, Youyun XU, Jing LIU, "Dynamic Multi-Band Sharing in Cognitive Radio Networks: A Market Game Approach" in IEICE TRANSACTIONS on Communications,
vol. E94-B, no. 2, pp. 499-507, February 2011, doi: 10.1587/transcom.E94.B.499.
Abstract: The traditional spectrum auctions require a central auctioneer. Then, the secondary users (SUs) can bid for spectrum in multiple auction or sealed auction way. In this paper, we address the problem of distributed spectrum sharing in the cognitive networks where multiple owners sell their spare bands to multiple SUs. Each SU equips multi-interface/multi-radio, so that SU can buy spare bands from multiple owners. On the other hand, each owner can sell its spare bands to serval SUs. There are two questions to be addressed for such an environment: the first one is how to select bands/the owners for each SU; the second one is how to decide the competitive prices for the multiple owners and multiple SUs. To this end, we propose a two-side multi-band market game theoretic framework to jointly consider the benefits of all SUs and owners. The equilibrium concept in such games is named core. The outcomes in the core of the game cannot be improved upon by any subset of players. These outcomes correspond exactly to the price-lists that competitively balance the benefits of all SUs and owners. We show that the core in our model is always non-empty. When the measurement of price takes discrete value, the core of the game is defined as discrete core. The Dynamic Multi-band Sharing algorithm (DMS) is proposed to converge to the discrete core of the game. With small enough measurement unit of price, the algorithm can achieve the optimal performance compared with centralized one in terms of the system utility.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E94.B.499/_p
Copy
@ARTICLE{e94-b_2_499,
author={Dapeng LI, Youyun XU, Jing LIU, },
journal={IEICE TRANSACTIONS on Communications},
title={Dynamic Multi-Band Sharing in Cognitive Radio Networks: A Market Game Approach},
year={2011},
volume={E94-B},
number={2},
pages={499-507},
abstract={The traditional spectrum auctions require a central auctioneer. Then, the secondary users (SUs) can bid for spectrum in multiple auction or sealed auction way. In this paper, we address the problem of distributed spectrum sharing in the cognitive networks where multiple owners sell their spare bands to multiple SUs. Each SU equips multi-interface/multi-radio, so that SU can buy spare bands from multiple owners. On the other hand, each owner can sell its spare bands to serval SUs. There are two questions to be addressed for such an environment: the first one is how to select bands/the owners for each SU; the second one is how to decide the competitive prices for the multiple owners and multiple SUs. To this end, we propose a two-side multi-band market game theoretic framework to jointly consider the benefits of all SUs and owners. The equilibrium concept in such games is named core. The outcomes in the core of the game cannot be improved upon by any subset of players. These outcomes correspond exactly to the price-lists that competitively balance the benefits of all SUs and owners. We show that the core in our model is always non-empty. When the measurement of price takes discrete value, the core of the game is defined as discrete core. The Dynamic Multi-band Sharing algorithm (DMS) is proposed to converge to the discrete core of the game. With small enough measurement unit of price, the algorithm can achieve the optimal performance compared with centralized one in terms of the system utility.},
keywords={},
doi={10.1587/transcom.E94.B.499},
ISSN={1745-1345},
month={February},}
Copy
TY - JOUR
TI - Dynamic Multi-Band Sharing in Cognitive Radio Networks: A Market Game Approach
T2 - IEICE TRANSACTIONS on Communications
SP - 499
EP - 507
AU - Dapeng LI
AU - Youyun XU
AU - Jing LIU
PY - 2011
DO - 10.1587/transcom.E94.B.499
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E94-B
IS - 2
JA - IEICE TRANSACTIONS on Communications
Y1 - February 2011
AB - The traditional spectrum auctions require a central auctioneer. Then, the secondary users (SUs) can bid for spectrum in multiple auction or sealed auction way. In this paper, we address the problem of distributed spectrum sharing in the cognitive networks where multiple owners sell their spare bands to multiple SUs. Each SU equips multi-interface/multi-radio, so that SU can buy spare bands from multiple owners. On the other hand, each owner can sell its spare bands to serval SUs. There are two questions to be addressed for such an environment: the first one is how to select bands/the owners for each SU; the second one is how to decide the competitive prices for the multiple owners and multiple SUs. To this end, we propose a two-side multi-band market game theoretic framework to jointly consider the benefits of all SUs and owners. The equilibrium concept in such games is named core. The outcomes in the core of the game cannot be improved upon by any subset of players. These outcomes correspond exactly to the price-lists that competitively balance the benefits of all SUs and owners. We show that the core in our model is always non-empty. When the measurement of price takes discrete value, the core of the game is defined as discrete core. The Dynamic Multi-band Sharing algorithm (DMS) is proposed to converge to the discrete core of the game. With small enough measurement unit of price, the algorithm can achieve the optimal performance compared with centralized one in terms of the system utility.
ER -