Reliable broadcasting in vehicular ad-hoc networks is challenging due to their unique characteristics including intermittent connectivity and various vehicular scenarios. Applications and services in intelligent transportation systems need an efficient, fast and reliable broadcasting protocol especially for safety and emergency applications. In our previous work, we have proposed DECA, a new reliable broadcasting protocol which suits such characteristics. To address the issue of various vehicular scenarios, our protocol performs beaconing to gather local density information of 1-hop neighbors and uses such information to adapt its broadcasting decision dynamically. Specifically, before broadcasting a message, a node selects a neighbor with the highest density and adds the selected neighbor's identifier to the message. Upon receiving of a broadcast message, each node checks whether or not it is the selected neighbor. If so, it is responsible for rebroadcasting the message immediately. This mechanism can raise the data dissemination speed of our protocol so that it is as fast as simple flooding. To address the issue of intermittent connectivity, identifiers of broadcast messages are added into beacons. This helps nodes to check if there are any broadcast messages that have not yet been received. In this paper, we propose DECA with a new beaconing algorithm and a new waiting timeout calculation, so-called DECA-bewa. Our new protocol can reduce redundant retransmissions and overall overhead in high density areas. The protocol performance is evaluated on the network simulator (NS-2). Simulation results show that DECA-bewa outperforms existing protocols in terms of reliability, overhead and speed of data dissemination.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kulit NA NAKORN, Kultida ROJVIBOONCHAI, "DECA-bewa: Density-Aware Reliable Broadcasting Protocol in VANETs" in IEICE TRANSACTIONS on Communications,
vol. E96-B, no. 5, pp. 1112-1121, May 2013, doi: 10.1587/transcom.E96.B.1112.
Abstract: Reliable broadcasting in vehicular ad-hoc networks is challenging due to their unique characteristics including intermittent connectivity and various vehicular scenarios. Applications and services in intelligent transportation systems need an efficient, fast and reliable broadcasting protocol especially for safety and emergency applications. In our previous work, we have proposed DECA, a new reliable broadcasting protocol which suits such characteristics. To address the issue of various vehicular scenarios, our protocol performs beaconing to gather local density information of 1-hop neighbors and uses such information to adapt its broadcasting decision dynamically. Specifically, before broadcasting a message, a node selects a neighbor with the highest density and adds the selected neighbor's identifier to the message. Upon receiving of a broadcast message, each node checks whether or not it is the selected neighbor. If so, it is responsible for rebroadcasting the message immediately. This mechanism can raise the data dissemination speed of our protocol so that it is as fast as simple flooding. To address the issue of intermittent connectivity, identifiers of broadcast messages are added into beacons. This helps nodes to check if there are any broadcast messages that have not yet been received. In this paper, we propose DECA with a new beaconing algorithm and a new waiting timeout calculation, so-called DECA-bewa. Our new protocol can reduce redundant retransmissions and overall overhead in high density areas. The protocol performance is evaluated on the network simulator (NS-2). Simulation results show that DECA-bewa outperforms existing protocols in terms of reliability, overhead and speed of data dissemination.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E96.B.1112/_p
Copy
@ARTICLE{e96-b_5_1112,
author={Kulit NA NAKORN, Kultida ROJVIBOONCHAI, },
journal={IEICE TRANSACTIONS on Communications},
title={DECA-bewa: Density-Aware Reliable Broadcasting Protocol in VANETs},
year={2013},
volume={E96-B},
number={5},
pages={1112-1121},
abstract={Reliable broadcasting in vehicular ad-hoc networks is challenging due to their unique characteristics including intermittent connectivity and various vehicular scenarios. Applications and services in intelligent transportation systems need an efficient, fast and reliable broadcasting protocol especially for safety and emergency applications. In our previous work, we have proposed DECA, a new reliable broadcasting protocol which suits such characteristics. To address the issue of various vehicular scenarios, our protocol performs beaconing to gather local density information of 1-hop neighbors and uses such information to adapt its broadcasting decision dynamically. Specifically, before broadcasting a message, a node selects a neighbor with the highest density and adds the selected neighbor's identifier to the message. Upon receiving of a broadcast message, each node checks whether or not it is the selected neighbor. If so, it is responsible for rebroadcasting the message immediately. This mechanism can raise the data dissemination speed of our protocol so that it is as fast as simple flooding. To address the issue of intermittent connectivity, identifiers of broadcast messages are added into beacons. This helps nodes to check if there are any broadcast messages that have not yet been received. In this paper, we propose DECA with a new beaconing algorithm and a new waiting timeout calculation, so-called DECA-bewa. Our new protocol can reduce redundant retransmissions and overall overhead in high density areas. The protocol performance is evaluated on the network simulator (NS-2). Simulation results show that DECA-bewa outperforms existing protocols in terms of reliability, overhead and speed of data dissemination.},
keywords={},
doi={10.1587/transcom.E96.B.1112},
ISSN={1745-1345},
month={May},}
Copy
TY - JOUR
TI - DECA-bewa: Density-Aware Reliable Broadcasting Protocol in VANETs
T2 - IEICE TRANSACTIONS on Communications
SP - 1112
EP - 1121
AU - Kulit NA NAKORN
AU - Kultida ROJVIBOONCHAI
PY - 2013
DO - 10.1587/transcom.E96.B.1112
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E96-B
IS - 5
JA - IEICE TRANSACTIONS on Communications
Y1 - May 2013
AB - Reliable broadcasting in vehicular ad-hoc networks is challenging due to their unique characteristics including intermittent connectivity and various vehicular scenarios. Applications and services in intelligent transportation systems need an efficient, fast and reliable broadcasting protocol especially for safety and emergency applications. In our previous work, we have proposed DECA, a new reliable broadcasting protocol which suits such characteristics. To address the issue of various vehicular scenarios, our protocol performs beaconing to gather local density information of 1-hop neighbors and uses such information to adapt its broadcasting decision dynamically. Specifically, before broadcasting a message, a node selects a neighbor with the highest density and adds the selected neighbor's identifier to the message. Upon receiving of a broadcast message, each node checks whether or not it is the selected neighbor. If so, it is responsible for rebroadcasting the message immediately. This mechanism can raise the data dissemination speed of our protocol so that it is as fast as simple flooding. To address the issue of intermittent connectivity, identifiers of broadcast messages are added into beacons. This helps nodes to check if there are any broadcast messages that have not yet been received. In this paper, we propose DECA with a new beaconing algorithm and a new waiting timeout calculation, so-called DECA-bewa. Our new protocol can reduce redundant retransmissions and overall overhead in high density areas. The protocol performance is evaluated on the network simulator (NS-2). Simulation results show that DECA-bewa outperforms existing protocols in terms of reliability, overhead and speed of data dissemination.
ER -