The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

Design Optimization of a High-Speed, Area-Efficient and Low-Power Montgomery Modular Multiplier for RSA Algorithm

Shoichi MASUI, Kenji MUKAIDA, Masahiko TAKENAKA, Naoya TORII

  • Full Text Views

    0

  • Cite this

Summary :

High-speed, area-efficient, and low-power Montgomery modular multipliers for RSA algorithm have been developed for digital signature and user authentication in high-speed network systems and smart card LSIs. The multiplier-accumulators (MAC) in the developed Montgomery modular multipliers have a non-identical multiplicand/multiplier word length organization. This organization can eliminate the bandwidth bottleneck associated with a data memory, and enables to use a single-port memory for area and power reductions. The developed MAC is faster than the conventional identical word length organization due to the shortened critical path. For smart card applications, an area-efficient architecture with 42 kgates can produce 1.2 digital signatures in a second for 2,048-bit key length with the power consumption of 6.8 mW.

Publication
IEICE TRANSACTIONS on Electronics Vol.E88-C No.4 pp.576-581
Publication Date
2005/04/01
Publicized
Online ISSN
DOI
10.1093/ietele/e88-c.4.576
Type of Manuscript
Special Section PAPER (Special Section on Low-Power LSI and Low-Power IP)
Category
Digital

Authors

Keyword