The static characteristics of GaInAs(P)/GaInAsP quantum well laser diodes (QW LDs), with graded-index separate-confinement-heterostructure (GRIN-SCH) grown by metalorganic chemical vapor deposition (MOCVD), have been investigated experimentally in terms of threshold current density, internal waveguide loss, differential quantum efficiency and light output power. Very low threshold current density of 410 A/cm2, high characteristic temperature of 113 K, low internal waveguide loss of 5 cm-1, high differential quantum efficiency of 82% and high light output power of 100 mW were obtained in 1.3 µm GRIN-SCH multiple quantum well (MQW) LDs by optimizing the quantum well structure including confinement layer and cavity design. Excellent uniformity for the threshold current, quantum efficiency and emission wavelength was obtained in all MOCVD grown buried heterostructure GRIN-SCH MQW LDs. Lasing characteristics of 1.5 µm GRIN-SCH MQW LDs are also described.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Akihiko KASUKAWA, Narihito MATSUMOTO, Takeshi NAMEGAYA, Yoshihiro IMAJO, "Static Characteristics of GaInAsP/InP Graded-Index Separate-Confinement-Heterostructure Quantum Well Laser Diodes (GRIN-SCH QW LDs) Grown by Metalorganic Chemical Vapor Deposition (MOCVD)" in IEICE TRANSACTIONS on Electronics,
vol. E75-C, no. 12, pp. 1541-1554, December 1992, doi: .
Abstract: The static characteristics of GaInAs(P)/GaInAsP quantum well laser diodes (QW LDs), with graded-index separate-confinement-heterostructure (GRIN-SCH) grown by metalorganic chemical vapor deposition (MOCVD), have been investigated experimentally in terms of threshold current density, internal waveguide loss, differential quantum efficiency and light output power. Very low threshold current density of 410 A/cm2, high characteristic temperature of 113 K, low internal waveguide loss of 5 cm-1, high differential quantum efficiency of 82% and high light output power of 100 mW were obtained in 1.3 µm GRIN-SCH multiple quantum well (MQW) LDs by optimizing the quantum well structure including confinement layer and cavity design. Excellent uniformity for the threshold current, quantum efficiency and emission wavelength was obtained in all MOCVD grown buried heterostructure GRIN-SCH MQW LDs. Lasing characteristics of 1.5 µm GRIN-SCH MQW LDs are also described.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e75-c_12_1541/_p
Copy
@ARTICLE{e75-c_12_1541,
author={Akihiko KASUKAWA, Narihito MATSUMOTO, Takeshi NAMEGAYA, Yoshihiro IMAJO, },
journal={IEICE TRANSACTIONS on Electronics},
title={Static Characteristics of GaInAsP/InP Graded-Index Separate-Confinement-Heterostructure Quantum Well Laser Diodes (GRIN-SCH QW LDs) Grown by Metalorganic Chemical Vapor Deposition (MOCVD)},
year={1992},
volume={E75-C},
number={12},
pages={1541-1554},
abstract={The static characteristics of GaInAs(P)/GaInAsP quantum well laser diodes (QW LDs), with graded-index separate-confinement-heterostructure (GRIN-SCH) grown by metalorganic chemical vapor deposition (MOCVD), have been investigated experimentally in terms of threshold current density, internal waveguide loss, differential quantum efficiency and light output power. Very low threshold current density of 410 A/cm2, high characteristic temperature of 113 K, low internal waveguide loss of 5 cm-1, high differential quantum efficiency of 82% and high light output power of 100 mW were obtained in 1.3 µm GRIN-SCH multiple quantum well (MQW) LDs by optimizing the quantum well structure including confinement layer and cavity design. Excellent uniformity for the threshold current, quantum efficiency and emission wavelength was obtained in all MOCVD grown buried heterostructure GRIN-SCH MQW LDs. Lasing characteristics of 1.5 µm GRIN-SCH MQW LDs are also described.},
keywords={},
doi={},
ISSN={},
month={December},}
Copy
TY - JOUR
TI - Static Characteristics of GaInAsP/InP Graded-Index Separate-Confinement-Heterostructure Quantum Well Laser Diodes (GRIN-SCH QW LDs) Grown by Metalorganic Chemical Vapor Deposition (MOCVD)
T2 - IEICE TRANSACTIONS on Electronics
SP - 1541
EP - 1554
AU - Akihiko KASUKAWA
AU - Narihito MATSUMOTO
AU - Takeshi NAMEGAYA
AU - Yoshihiro IMAJO
PY - 1992
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E75-C
IS - 12
JA - IEICE TRANSACTIONS on Electronics
Y1 - December 1992
AB - The static characteristics of GaInAs(P)/GaInAsP quantum well laser diodes (QW LDs), with graded-index separate-confinement-heterostructure (GRIN-SCH) grown by metalorganic chemical vapor deposition (MOCVD), have been investigated experimentally in terms of threshold current density, internal waveguide loss, differential quantum efficiency and light output power. Very low threshold current density of 410 A/cm2, high characteristic temperature of 113 K, low internal waveguide loss of 5 cm-1, high differential quantum efficiency of 82% and high light output power of 100 mW were obtained in 1.3 µm GRIN-SCH multiple quantum well (MQW) LDs by optimizing the quantum well structure including confinement layer and cavity design. Excellent uniformity for the threshold current, quantum efficiency and emission wavelength was obtained in all MOCVD grown buried heterostructure GRIN-SCH MQW LDs. Lasing characteristics of 1.5 µm GRIN-SCH MQW LDs are also described.
ER -