The search functionality is under construction.

IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.48

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E75-C No.12  (Publication Date:1992/12/25)

    Special Issue on SOI (Si on Insulator) Devices
  • FOREWORD

    Takashi ITO  

     
    FOREWORD

      Page(s):
    1413-1414
  • SIMOX Wafers Having Low Dislocation Density Formed with a Substoichiometric Dose of Oxygen

    Sadao NAKASHIMA  Katsutoshi IZUMI  

     
    PAPER-SOI Wafers

      Page(s):
    1415-1420

    The threading dislocation density and the structure of SIMOX wafers formed under different implantation conditions have been invenstigated using Secco etching, cross-sectional transmission electron microscopy and Raman spectroscopy. The breakdown voltage of the buried oxide layer has also been studied. The dislocation density is greatly affected by the dose and the wafer temperature during implantation. The SIMOX wafer implanted at 180 keV with a substoichiometric dose of 0.4 1018 O+ cm-2 at 550 and subsequently annealed at 1350 has an extremely low dislocation density on the order of 102 cm-2. The effect of the wafer temperature on the reduction of the dislocation density is discussed.

  • C-V Measurement and Simulation of Silicon-Insulator-Silicon (SIS) Structures for Analyzing Charges in Buried Oxides of Bonded SOI Materials

    Kiyoshi MITANI  Hisham Z. MASSOUD  

     
    PAPER-SOI Wafers

      Page(s):
    1421-1429

    Charges in buried oxide layers formed by wafer bonding were evaluated by capacitance-voltage (C-V) measurements. In this study, silicon-insulator-silicon (SIS) and metal-oxide-silicon (MOS) capacitors were fabricated on bonded wafers. For analyzing C-V curves of SIS structures, C-V simulation programs were developed. From the analysis, we conclude that approximately 2 1011/cm2 negative charges were distributed uniformly in the oxide. The effect of the experimental conditions during wafer bonding on generated charges in buried oxides is also discussed.

  • Characterization of the Laser-Recrystallized Single-Crystalline Si-SiO2 Interface

    Nobuo SASAKI  

     
    PAPER-SOI Wafers

      Page(s):
    1430-1437

    The interface between laser-recrystallized Si and SiO2 is investigated by means of capacitance-voltage curve measurements. The recrystallization is performed by scanning cw Ar+ laser. The change in the C-V curves shows that the laser-recrystallization generates positive charge and the fast interface states at the Si-SiO2 interface, and creates n-type defects in recrystallized bulk silicon. Nominal interface charge increases linearly with a laser power. The increase in the charge is enhanced by fast laser-beam scanning velocity. The change in the C-V curve is suppressed, if a substrate is heated up to 450 during recrystallization. Complete recovery of the induced change in the C-V curves requires a subsequent furnace annealing at a temperature as high as 1100. These phenomena are explained by the generation of oxygen vacancy at the Si-SiO2 interface and quenched-in point defects in the recrystallized Si. The oxygen vacancy is produced by a reaction between the melted Si and SiO2. The quenched-in defects are produced during fast cooling of the melted Si.

  • Analysis of Localized Temperature Distribution in SOI Devices

    Hizuru YAMAGUCHI  Shigeki HIRASAWA  Nobuo OWADA  Nobuyoshi NATSUAKI  

     
    PAPER-SOI Devices

      Page(s):
    1438-1441

    Localized temperature distribution in silicon on insulator (SOI) structures with trench isolations is calculated using three-dimensional computer simulation. Temperature rise in SOI transistors is about three times higher than in conventional structure transistors because the thermal conductivity of SiO2 is very low. If there are voids in the SiO2 layers and trench isolations, temperature in the SOI transistors increases significantly. A simple model is proposed to calculate steady-state temperature rise in SOI transistors.

  • High-Temperature Operation of nMOSFET on Bonded SOI

    Yoshihiro ARIMOTO  

     
    PAPER-SOI Devices

      Page(s):
    1442-1446

    This paper describes high-temperature operation of nMOSFET on bonded SOI. A long-channel nMOSFET is fabricated on bonded SOI (Si layer thickness 0.3 µm), SOS (Si layer thickness 0.3 µm), and bulk Si, Bonded SOI is produced using pulse-field-assisited bonding and resistivity-sensitive etching. The high-temperature operation of bonded SOI nMOSFET is demonstrated and compared with SOS and bulk MOSFETs. The leakage current variation with temperature is signnificantly smaller in bonded SOI and in SOS than in bulk MOSFETs. At high temperatures, the drain current to leakage current ratio is 100 times higher in bonded SOI than in SOS and bulk devices. At 300, a ratio of 104 is obtained for the bonded SOI nMOSFET. The ratio is expected to be even higher if a reduced channel length and ultrathin (less than 0.1 µm) bonded SOI is used.

  • Phenomenon and Mechanism of CMOS Latch-up Induced by Substrate Voltage Fluctuation in Thick Film SOI Structure

    Hitoshi YAMAGUCHI  Hiroaki HIMI  Seiji FUJINO  Tadashi HATTORI  

     
    PAPER-SOI Devices

      Page(s):
    1447-1452

    The composition of CMOS control circuit and Vertical-Double-Diffused-MOS (VDMOS) power device on a single chip by using Silicon-On-Insulator (SOI) structure is formulated. Because all the MOS transistors in the CMOS control circuit are not isolated by the trenches, the interference phenomenon between SOI and the substrate is studied. Latch-up is detected thus, the construction of a mechanism to prevent latch-up is also studied. To evaluate the SOI CMOS characteristics the effects of voltage fluctuation on the substrate is analized. The latch-up mechanism is also analized by transient device simulation. As a result of this study a guideline for the immunity of latch-up is established, the features of the mechanism are as follows. First, the latch-up trigger is the charging current of the condenser composed of the oxide layer in the SOI structure. Second, latch-up is normally caused by positive feedback between the parasitic PNP-transistor and the parasitic NPN-transistor. However, in this case, electron diffusion toward the P-well is dominant after the parasitic PNP-transistor falls into high level injection. This feature is different from the conventional mechanism. The high level injection is caused by carrier accumulation in the N- region. Considering the above, it is necessary to; (1) reduce the charging current of the condenser, (2) reduce the parasitic resistance in the N- region of SOI, and (3) reduce the carrier accumulation in SOI for immunity from latch-up.

  • A 4 GHz Thin-Base Lateral Bipolar Transistor Fabricated on Bonded SOI

    Naoshi HIGAKI  Tetsu FUKANO  Atsushi FUKURODA  Toshihiro SUGII  Yoshihiro ARIMOTO  Takashi ITO  

     
    PAPER-SOI Devices

      Page(s):
    1453-1458

    We fabricated a 4 GHz thin-base (120 nm) lateral bipolar transistor on bonded SOI by applying our sidewall self-aligning base process. By applying this device to BiCMOS circuits, bipolar transistor base junction capacitance, and MOSFET source and drain capacitance were very small. Furthermore, MOSFET and bipolar transistors are completely isolated from each other. Thus, it is easy to optimize MOS and bipolar processes, and provide protection from latch-up problems and soft errors caused by α-particles. In this paper, we describe device characteristics and discuss the crystal quality degradation introduced by ion implantation, and two dimensional effects of base diffusion capacitance.

  • Bevel Style High Voltage Power Transistor for Power IC

    Kazuhiro TSURUTA  Mitsutaka KATADA  Seiji FUJINO  Tadashi HATTORI  

     
    PAPER-SOI Devices

      Page(s):
    1459-1464

    A bipolar power transistor which has beveled side walls with an exposed PN junction has been fabricate using silicon wafer direct bonding technique. It is suitable for a power IC which has a control circuit formed on a SOI structure and a vertical power transistor. It can achieve the breakdown voltage of more than 1000 V in smaller chip size than conventional power devices and reduce the ON-resistance because it is possible to optimize the thickness and resistivity of its low impurity collector layer. Angles of beveled side walls were determined by simulating the electric fields in the devices. As a result, it was found that both NPN and PNP bipolar power transistors with breakdown voltages of 1500 V could be fabricated.

  • Hot-Carrier Reliability in Submicrometer Ultra-Thin SOI-MOSFET's

    Yasuo YAMAGUCHI  Masahiro SHIMIZU  Yasuo INOUE  Tadashi NISHIMURA  Katsuhiro TSUKAMOTO  

     
    PAPER-Hot Carrier

      Page(s):
    1465-1470

    Hot-carrier characteristics in ultra-thin SOI MOSFET's (T-SOI MOSFET's) with gate-overlapped LDD have been investigated. The change in transistor static characteristics after hot carrier stress was mainly observed as positive threshold voltage (Vt) shifts due to trapped electrons, while in bulk-Si MOSFET's drain current degradation was dominant. The hot-carrier life time in T-SOI MOSFET's was comparable to that in bulk-Si devices at low drain voltage, but the life time dependence on drain voltage was different from that in bulk-Si MOSFET's, and the Vt degraded rapidly at the condition that parasitic bipolar breakdown began to occur. This implies that the drain supply voltage in T-SOI MOSFET's is determined directly by parasitic bipolar breakdown voltage unlike bulk-Si MOSFET's in which it is determined by hot-carrier reliability. The gate-overlapped LDD structure was compared with single drain structure and proved to provide better hot-carrier endurance by the improvement of the parasitic bipolar breakdown voltage. The hot-carrier reliability in the back channels of T-SOI MOSFET's was also investigated, and it was found that the back channel tends to be degraded more easily than front channel with large positive Vt shifts. These results suggest that the front Vt shifts in T-SOI devices are related with electron injection into the back surface of the T-SOI layer through charge coupling at the condition that the parasitic bipolar breakdown occurs.

  • Hot-Carrier-Induced Photon Emission in Thin SOI/MOSFETs

    Seiichiro KAWAMURA  Takami MAKINO  Kazuo SUKEGAWA  

     
    PAPER-Hot Carrier

      Page(s):
    1471-1476

    A study of hot-carrier-induced photon emission in thin SOI/MOSFETs has been carried out both for bonded-SOI and SIMOX/SOI. The photon emission is observed not only in the drain region but also in the source region for SOI/MOSFETs, whereas only in the drain region for conventional bulk MOSFETs. From the emission spectrum, it can be concluded that the emission mechanism of the source region is probably a photon-assisted direct recombination of electrons and holes, while both the recombination and Bremsstrahlung are the possible mechanism for the drain region. The total photo intensity from SOI/MOSFETs increases as the SOI film thickness decreases, showing that strong impact ionization occurs near the drain region for thinner SOI devices. The relation between the lifetime and the photo intensity for SOI/MOSFETs is very similar to that between the lifetime and the substrate current for conventional bulk/MOSFETs, proving that photon emission is a good indicator of the hot carrier degradation in thin SOI/MOSFETs. The lifetime measurement using the photon emission both for SOI and bulk devices indicates that longer lifetime can be expected for thin film SOI/MOSFETs with a reduced drain bias which will be indispensable for future sub-half micron MOSFETs.

  • Simulation of Velocity Overshoot and Hot Carrier Effects in Thin-Film SOI-nMOSFETs

    Kazuya MATSUZAWA  Minoru TAKAHASHI  Makoto YOSHIMI  Naoyuki SHIGYO  

     
    PAPER-Hot Carrier

      Page(s):
    1477-1483

    The velocity overshoot and hot carrier effects in thin-film SOI-nMOSFETs have been studied using a two-dimensional device simulator based on the energy transport model. It has been found that the velocity overshoot effect in a nearly-intrinsic device becomes pronounced in the short channel region because of their high carrier mobility. The distribution of the electron velocity in a 0.2 µm channel length SOI device shows that the velocity overshoot takes place over the whole channel region, which enhances the drive capability significantly. The behaviors of hot carriers injected into the gate oxide and the back oxide have been simulated for the first time by using the energy distribution functions of electrons and holes at the SOI-SiO2 interface and solving the current continuity equation in the oxide layer. It has been found that hot carriers are injected not only into the gate oxide but also into the back oxide, which can degrade hot-carrier reliability in small-featured thin-film SOI-MOSFETs.

  • Effects of Hot Electron Trapping in Ultra-Thin-Film SOI/SIMOX pMOSFET's

    Kazuo SUKEGAWA  Seiichiro KAWAMURA  

     
    PAPER-Hot Carrier

      Page(s):
    1484-1490

    Hot carrier stressing is carried out on ultra-thin-film SOI/pMOSFET's under a front gate operation. Degradations of both front and back gate characteristics are estimated. Effects of trapped electron in the front and the back gate oxide on device characteristics are also estimated. In a triode region, it is found that degradation in front gate characteristics is correlated with that in back gate characteristics, although ΔVth(b) is twenty times as large as ΔVth(f), due to difference between the front gate and the buried oxide thickness. In a pentode region, Δβ/β0 in a forward-mode is larger than that in a reverse-mode. This is because of the non-uniformly distributed hot carrier damage along the channel. Based on the charge-coupling theory, damages in the front gate and buried oxide by hot carrier effects are estimated separately. Flat-band-voltage shift in the back gate due to trapped charges in the buried oxide, is obtained from Vth (f) dependence on back gate bias. For Leff=2.0 µm devices, the flat-band-voltage shift varies in the range of 1.00 to 1.50 V. This indicates that trapped electrons are created in the buried oxide. Trapped electrons in the buried oxide increase gm(f) through the effect equivalent to back gate bias. From gm(f) dependence on back gate bias, it is found that effective channel length is decreased by trapped electrons in the front gate oxide near the drain. Therefore, it is worth noticing that, in hot carrier effects in ultra-thin-film SOI/pMOSFET's, gm is increased not only by the reduction of effective channel length but also by the equivalent back gate bias effect.

  • Investigation on High-Speed Performance of 0.1-µm-Gate, Ultrathin-Film CMOS/SIMOX

    Yasuhisa OMURA  Sadao NAKASHIMA  Katsutoshi IZUMI  

     
    PAPER-Deep Sub-micron SOI CMOS

      Page(s):
    1491-1497

    A 0.1-µm-gate CMOS/SIMOX has been successfully fabricated using high quality SIMOX substrates. The propagation delay time for the 0.1-µm-gate CMOS/SIMOX is not so noticeable due to the parasitic resistance of the source and drain regions. We anticipate 0.1-µm-gate CMOS/SIMOX devices with a delay time of less than 20 ps at a supply voltage of 1.5 V by reducing the remaining parasitic resistance and capacitances.

  • Two-Dimensional Device Simulation of 0.1 µm Thin-Film SOI MOSFET's

    Hans-Oliver JOACHIM  Yasuo YAMAGUCHI  Kiyoshi ISHIKAWA  Norihiko KOTANI  Tadashi NISHIMURA  Katsuhiro TSUKAMOTO  

     
    PAPER-Deep Sub-micron SOI CMOS

      Page(s):
    1498-1505

    Thin- and ultra-thin-film SOI MOSFET's are promising candidates to overcome the constraints for future miniaturized devices. This paper presents simulation results for a 0.1 µm gate length SOI MOSFET structure using a two-dimensional/two-carrier device simulator with a nonlocal model for the avalanche induced carrier generation. For the suppression of punchthrough effect in devices with a channel doping of 1 1016 cm-3 and 5 nm thick gate oxide it is found that the SOI layer thickness has to be reduced to at least 20 nm. The thickness of the buried oxide should not be smaller than 50 nm in order to avoid the degradation of thin SOI performance advantages. Investigating ways to suppress the degradation of the sub-threshold slope factor at these device dimensions it was found in contrast to the common expectation that the S-factor can be improved by increasing the body doping concentration. This phenomenon, which is a unique feature of thin-film depleted SOI MOSFET's, is explained by an analytical mode. At lower doping the area of the current flow is reduced by a decreasing effective channel thickness resulting in a slope factor degradation. Other approaches for S-factor improvement are the reduction of the channel edge capacitances by source/drain engineering or the decrease of SOI thickness or gate oxide thickness. For the latter approach a higher permittivity gate insulating material should be used in order to prevent tunnelling. The low breakdown voltage can be increased by utilizing an LDD structure to be suitable for a 1.5 V power supply. However, this is at the expense of reduced current drive. An alternative could be the supply voltage reduction to 1.0 V for single drain structure use. A dual-gated SOI MOSFET has an improved performance due to the parallel combination of two MOSFET's in this device. A slightly reduced breakdown voltage indicates a larger drain electric field present in this structure.

  • Analytical Modeling of Dynamic Performance of Deep Sub-micron SOI/SIMOX Based on Current-Delay Product

    Minoru FUJISHIMA  Makoto IKEDA  Kunihiro ASADA  Yasuhisa OMURA  Katsutoshi IZUMI  

     
    PAPER-Deep Sub-micron SOI CMOS

      Page(s):
    1506-1514

    Dynamic performance of ultra-thin SIMOX (Separation by IMplanted OXgen) CMOS circuits has been studied using ring oscillators. A novel concept of current-delay product, along with an equivalent linear resistance of MOSFETs, is applied for deriving effective load capacitance of near 0.1 µm gate CMOS circuits. Calculation results showed quatitative agreement with measurement data. It was found that the gate-fringing capacitance limits the delay time is the case of under 0.2 µm gate-length. The lower bound of power-delay product of SIMOX/SOI is expected as low as 0.2 fJ for the gate length of 0.15 µm at the supply voltage of 1.5 V.

  • Mixed-Signal IC (MSIC) for New SOI-Based Structure

    Takeshi MATSUTANI  Toshiharu TAKARAMOTO  Takao MIURA  Syuichi HARAJIRI  Tsunenori YAMAUCHI  

     
    PAPER-SOI LSIs

      Page(s):
    1515-1521

    We fabricated mixed-signal ICs (MSICs) using wafer-bonded SOI devices with a film several microns thick. We found the MOSFETs on wafer-bonded SOI had characteristics as good as those on a conventional wafer provided the active Si layer is more than 2 µm thick. We fabricated a 16-bit SOI-CMOS delta-sigma A/D converter that suppressed digital noise interference via the substrate. We also fabricated a rectifier-merged SOI-BiCMOS circuit. The resulting characteristics were good, and not possible using conventional junction isolation. Our results suggest that SOI-based isolation is a key technology in integrating devices and systems on a single chip.

  • Bonded SOI with Polish-Stopper Technology for ULSI

    Yoshihiro MIYAZAWA  Makoto HASHIMOTO  Naoki NAGASHIMA  Hiroshi SATO  Muneharu SHIMANOE  Katsunori SENO  Fumio MIYAJI  Takeshi MATSUSHITA  

     
    PAPER-SOI LSIs

      Page(s):
    1522-1528

    SOI technology has been developed for not only future ULSI, but also intelligent power ICs and sensors. In this paper the SOI fabrication process with wafer bonding and polish-stopper technologies, and its advantages for future ULSI are shown. And high crystal quality of SOI films fabricated with this method, and high speed performance of SOI devices and circuits, are shown from the data of 256 kb full CMOS SRAM chips. Moreover it is shown from the fabrication data of 4 Mb full CMOS SRAM cells that this technology has a large flexibility on device structure design. These results mean that our technology has great advantages for reduction of cell size and improvement of circuit performance.

  • Regular Section
  • Theoretical Analysis of Single Mode GaInAsP/InP Positive-Index-Guided Laser Array

    Jie DONG  Jong-In SHIM  Shigehisa ARAI  Kazuhiro KOMORI  

     
    PAPER-Opto-Electronics

      Page(s):
    1529-1535

    A detailed numerical solution of the design criteria of in-phase lateral and single-longitudinal-mode operation GaInAsP/InP DFB laser arrays is presented. The analysis, including broad-area pumped and stripe-geometry pumped index-guided arrays, was carried out on the basis of the eigenvalue equation method. It is shown that there exists a cut-off array pitch co, at which all of the higher-order array modes are cut off. For the pitch larger than the cut-off pitch co, the modal discrimination is evaluated by the threshold gain difference between the in-phase lateral and higher-order array modes. As a result, the modal discrimination was found to decrease with the increase of the number of elements and the array pitch which is limited to be smaller than twice the cut-off pitch co to attain a stable in-phase lateral- and single-longitudinal-mode operation.

  • Numerical Analysis of Stability Property of an Optically Injection-Locked Semiconductor Laser Taking Account of Gain Saturation

    Koichi IIYAMA  Ken-ichi HAYASHI  Yoshio IDA  

     
    PAPER-Opto-Electronics

      Page(s):
    1536-1540

    Stability property of an optically injection-locked semiconductor laser taking account of gain saturation is discussed. Numerical analysis shows that stable locking region is broadened due to gain saturation. This is because of rapid damping of relaxation oscillation due to gain saturation. It is also found that stable locking region is also broadened with increasing injection current since damping of relaxation oscillation becomes strong with increasing injection current. Numerical calculations of lasing spectrum show that the magnitude of sidepeaks appeared at harmonics of relaxation oscillation frequency under unstable locking condition are suppressed due to gain saturation.

  • Static Characteristics of GaInAsP/InP Graded-Index Separate-Confinement-Heterostructure Quantum Well Laser Diodes (GRIN-SCH QW LDs) Grown by Metalorganic Chemical Vapor Deposition (MOCVD)

    Akihiko KASUKAWA  Narihito MATSUMOTO  Takeshi NAMEGAYA  Yoshihiro IMAJO  

     
    PAPER-Opto-Electronics

      Page(s):
    1541-1554

    The static characteristics of GaInAs(P)/GaInAsP quantum well laser diodes (QW LDs), with graded-index separate-confinement-heterostructure (GRIN-SCH) grown by metalorganic chemical vapor deposition (MOCVD), have been investigated experimentally in terms of threshold current density, internal waveguide loss, differential quantum efficiency and light output power. Very low threshold current density of 410 A/cm2, high characteristic temperature of 113 K, low internal waveguide loss of 5 cm-1, high differential quantum efficiency of 82% and high light output power of 100 mW were obtained in 1.3 µm GRIN-SCH multiple quantum well (MQW) LDs by optimizing the quantum well structure including confinement layer and cavity design. Excellent uniformity for the threshold current, quantum efficiency and emission wavelength was obtained in all MOCVD grown buried heterostructure GRIN-SCH MQW LDs. Lasing characteristics of 1.5 µm GRIN-SCH MQW LDs are also described.