The search functionality is under construction.

Author Search Result

[Author] Koichi IIYAMA(13hit)

1-13hit
  • Excellent Linearly Frequency-Swept Light Source for Sensing System Utilizing FMCW Technique

    Lu-Tang WANG  Koichi IIYAMA  Ken-ichi HAYASHI  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1716-1721

    We propose and demonstrate an excellent linearly frequency-swept laser diode (LD) for sensing system utilizing frequency-moduleted continuous-wave (FMCW) technique. In order to linearly sweep the optical frequency, we adopt a reference interferometer and an electric phase comparator. The interference beat signal of the reference interferometer is phase-compared with an external reference rectangular signal having a fixed frequency near the interference beat signal frequency by a lock-in amplifier. The error signal from the lock-in amplifier is fed back to the modulating signal of the injection current of the LD. Thus, a phase-locked loop composed of optical and electric circuits can be established, and the beat signal frequency is locked to the frequency of the reference signal. The optical frequency of the LD is, therefore, excellently linearly swept in time. In order to experimentally confirm the linearlity of the proposed method, we apply this light source to the FMCW reflectometry. Resultingly, the improvement of the linearity is estimated to be about 10 dB. And the theoretically limited spatial resolution of the FMCW reflectometry is achieved.

  • Equivalent Circuit Model of InAlAs/InGaAs/InP Heterostructure Metal-Semiconductor-Metal Photodetectors

    Koichi IIYAMA  Junya ASHIDA  Akira TAKEMOTO  Saburo TAKAMIYA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E86-C No:11
      Page(s):
    2278-2282

    One-dimentional equivalent circuit model of a heterostructure InAlAs/InGaAs/InP metal-semiconductor-metal photodetector is discussed. In this photodetector, InGaAs is used as an optical absorption layer and the InAlAs is used for Schottky barrier enhanement. The measured S11 parameter deviates from equi-resistance lines on the Smith chart, indicating the equivalent circuit is different from the conventional equivalent circuit using a series resistance, a depletion region capacitance and a depletion region resistance. The difference is due to band discontinuity at the heterojunctions, and we propose a equivalent circuit taking account of the band discontinuity. The band discontinuity is expressed by parallel combination of a resistance and a capacitance. The measured S11 parameter can be fitted well with the calculated S11 parameter from the proposed equivalent circuit, and we can successfully extract the device parameters from the fitted curve.

  • High Speed and High Responsivity Avalanche Photodiode Fabricated by Standard CMOS Process in Blue Wavelength Region Open Access

    Koichi IIYAMA  Takeo MARUYAMA  Ryoichi GYOBU  Takuya HISHIKI  Toshiyuki SHIMOTORI  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    574-580

    Quadrant silicon avalanche photodiodes (APDs) were fabricated by standard 0.18µm CMOS process, and were characterized at 405nm wavelength for Blu-ray applications. The size of each APD element is 50×50µm2. The dark current was 10pA at low bias voltage, and low crosstalk of about -80dB between adjacent APD elements was achieved. Although the responsivity is less than 0.1A/W at low bias voltage, the responsivity is enhanced to more than 1A/W at less than 10V bias voltage due to avalanche amplification. The wide bandwidth of 1.5GHz was achieved with the responsivity of more than 1A/W, which is limited by the capacitance of the APD. We believe that the fabricated quadrant APD is a promising photodiode for multi-layer Blu-ray system.

  • Measuring Method for Locking Bandwidth of Injection-Locked Semiconductor Lasers

    Ken-ichi HAYASHI  Koichi IIYAMA  Yoshio IDA  Kazuo ARAI  

     
    LETTER-Quantum Electronics

      Vol:
    E70-E No:4
      Page(s):
    306-308

    A novel and simple measuring method for locking bandwidths of injection-locked semiconductor lasers is proposed. The measuring system based on this method can visualize the overall locking bandwidth and quickly measure the boundaries. Some experimental results are also presented.

  • Effect of Laser Phase-Induced Intensity Noise on Multiplexed Fiber-Optic Sensor System Using Optical Loop with Frequency Shifter

    Xisao-qun ZHOU  Koichi IIYAMA  Ken-ichi HAYASHI  

     
    PAPER-Quantum Electronics

      Vol:
    E79-C No:3
      Page(s):
    437-443

    We have proposed a multiplexed fiber-optic sensor system using an optical loop with a frequency shifter. The measured output power spectrum of the system has shown that the multiprexed signals superimpose upon a noise pedestal which is like a series of hill peaks. In this paper, the output power spectrum is theoretically analyzed from the output intensity autocor-relation function. It displays that the noise pedestal originates from the laser phase-induced intensity noise. The noise level depends on the coherence time of the laser source. The positions of peaks are decided by the working frequency of the frequency shifter in the optical loop. The sensitivity of the system are related to the bandwidth B, the coherence time Tc, the sensor number n to be multiplexed, the loop loss α, and the fiber coupler parameters. Properly choosing these parameters is beneficial to improve the sensitivity of system.

  • Numerical Analysis of Stability Property of an Optically Injection-Locked Semiconductor Laser Taking Account of Gain Saturation

    Koichi IIYAMA  Ken-ichi HAYASHI  Yoshio IDA  

     
    PAPER-Opto-Electronics

      Vol:
    E75-C No:12
      Page(s):
    1536-1540

    Stability property of an optically injection-locked semiconductor laser taking account of gain saturation is discussed. Numerical analysis shows that stable locking region is broadened due to gain saturation. This is because of rapid damping of relaxation oscillation due to gain saturation. It is also found that stable locking region is also broadened with increasing injection current since damping of relaxation oscillation becomes strong with increasing injection current. Numerical calculations of lasing spectrum show that the magnitude of sidepeaks appeared at harmonics of relaxation oscillation frequency under unstable locking condition are suppressed due to gain saturation.

  • Mutual Optical Injection-Locking Characteristics of Semiconductor Lasers

    Koichi IIYAMA  Ken-ichi HAYASHI  Yoshio IDA  Shigeki AISAWA  

     
    PAPER-Quantum Electronics

      Vol:
    E72-E No:2
      Page(s):
    118-123

    The characteristic features of a mutual optical injection-locking system using semiconductor lasers are both analytically and experimentally examined. It is found that in the case of low injection level, locked frequency, locked powers and locking bandwidth of the system are suitably characterized in terms of both a figure of merit specifying unilaterality of optical injection and a modified round-trip phase angle of optical coupling circuit between lasers. The analysis is applicable not only to unilateral optical injection-locking system but also to mutual optical injection-locking system with an arbitrary inverse optical injection. The results of experiment using AlGaAs CSP lasers are found to be in good agreement with the analysis provided that the mutual injection levels are low.

  • Avalanche Amplification in Silicon Lateral Photodiode Fabricated by Standard 0.18 µm CMOS Process

    Koichi IIYAMA  Noriaki SANNOU  Hideki TAKAMATSU  

     
    LETTER-Lasers, Quantum Electronics

      Vol:
    E91-C No:11
      Page(s):
    1820-1823

    A silicon lateral photodiode is fabricated by standard 0.18 µm CMOS process, and the optical detection property is characterized. The photodiode has interdigital electrode structure with the electrode width of 0.22 µm and the electrode spacing of 0.6 µm. At 830 nm wavelength, the responsivity is 0.12 A/W at low bias voltage, and is increased to 0.6 A/W due to avalanche amplification. The bandwidth is also enhanced from 12 MHz at low bias voltage to 100 MHz at the bias voltage close to the breakdown voltage.

  • Characterizing Silicon Avalanche Photodiode Fabricated by Standard 0.18µm CMOS Process for High-Speed Operation

    Zul Atfyi Fauzan Mohammed NAPIAH  Ryoichi GYOBU  Takuya HISHIKI  Takeo MARUYAMA  Koichi IIYAMA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E99-C No:12
      Page(s):
    1304-1311

    nMOS-type and pMOS-type silicon avalanche photodiodes (APDs) were fabricated by standard 0.18µm CMOS process, and the current-voltage characteristic and the frequency response of the APDs with and without guard ring structure were measured. The role of the guard ring is cancellation of photo-generated carriers in a deep layer and a substrate. The bandwidth of the APD is enhanced with the guard ring structure at a sacrifice of the responsivity. Based on comparison of nMOS-type and pMOS-type APDs, the nMOS-type APD is more suitable for high-speed operation. The bandwidth is enhanced with decreasing the spacing of interdigital electrodes due to decreased carrier transit time and with decreasing the detection area and the PAD size for RF probing due to decreased device capacitance. The maximum bandwidth was achieved with the avalanche gain of about 10. Finally, we fabricated a nMOS-type APD with the electrode spacing of 0.84µm, the detection area of 10×10µm2, the PAD size for RF probing of 30×30µm2, and with the guard ring structure. The maximum bandwidth of 8.4GHz was achieved along with the gain-bandwidth product of 280GHz.

  • Experimental Study of Lasing Characteristics of Brillouin/Erbium Optical Fiber Laser

    Koichi IIYAMA  Fumihiro DEMURA  Saburo TAKAMIYA  

     
    PAPER-Optoelectronics

      Vol:
    E88-C No:6
      Page(s):
    1304-1309

    A lasing charactrization of a Brillouin/erbium optical fiber laser (BEFL) is experimentally discussed. In the BEFL, an erbium-doped fiber amplifier (EDFA) is incorporated into the Brillouin laser resonator to enhance small Brillouin gain, which makes the configuration of the Brillouin laser resonator easy and flexible. The experimental results show that the output power of the BEFL has a threshold against the Brillouin pump power, and above the Brillouin threshold, the output power increases linearly with the EDFA pump power. The BEFL threshold decreases with increasing the length of the optical fiber in the laser resonator used as a Brillouin gain medium. The BEFL oscillates in a stable single longitudinal mode because the bandwidth of the Brillouin gain profile is very narrow ( 30 MHz). The relative intensity noise (RIN) and the spectral lineshape were measured. The noise floor level decreases with increasing the EDFA pump power, and the full-width at half maximum of the BEFL was measured to be about 8 kHz.

  • Extended-Range High-Resolution FMCW Reflectometry by Means of Electronically Frequency-Multiplied Sampling Signal Generated from Auxiliary Interferometer

    Koichi IIYAMA  Makoto YASUDA  Saburo TAKAMIYA  

     
    PAPER-Optoelectronics

      Vol:
    E89-C No:6
      Page(s):
    823-829

    High-resolution FMCW reflectometry is often realized by sampling the beat signal with a clock signal generated from an auxiliary interferometer. The drawback of this system is that the measurement range is limited to less than half of the optical path difference of the auxiliary interferometer to satisfy the Sampling theorem. We propose and demonstrate a method to extend the measurement range of the system. The clock signal gerenerated from the auxiliary interferometer is electronically frequency-multipled by using a PLL circuit. The measurement range is experimentally extended by a factor of 20 while keeping high spatial resolution, and is theoretically extended by a factor of 128. The advantage of the proposed system is that the optical path difference of the auxiliary interferometer can be kept short, which is very effective for obtaining the stable and low time-jitter clock signal.

  • Lineshape and Linewidth of Optically Injection-Locked Semiconductor Laser with a Small Locking Bandwidth

    Koichi IIYAMA  Yoshiyasu TAGAWA  Ken-ichi HAYASHI  Yoshio IDA  

     
    LETTER-Quantum Electronics

      Vol:
    E73-E No:7
      Page(s):
    1153-1155

    Spectral properties of an optically injection-locked semiconductor laser are analytically calculated and are experimentally verified the locking bandwidth is comparable to or smaller than the linewidth of a slave laser. In this case, the spectral lineshape becomes non-Lorentzian and its linewidth strongly depends on the locking bandwidth.

  • Phase-Decorrelated FMCW Reflectometry for Long Optical Fiber Characterization by Using a Laser Diode with Modulated External-Cavity

    Koichi IIYAMA  Takahiro MAEDA  Saburo TAKAMIYA  

     
    PAPER-Sensing for Optical Fiber Communication

      Vol:
    E83-C No:3
      Page(s):
    428-434

    We describe FMCW reflectometry for characterization of long optical fibers by using an external-cavity laser diode as a light source. Since the optical path difference between the reference beam and the reflected beam from the optical fiber under test is much longer than the coherence length of the light source, the reference and the reflected beams are phase-decorrelated. As a result, the beat spectrum between the reference and the reflected beams is measured. In the phase-decorrelated FMCW reflectomety, the spatial resolution is enhanced by narrowing the spectral linewidth of the light source and increasing the repetition frequency of the optical frequency sweep as well as increasing the chirping range of the optical frequency sweep. In the experiments, an external-cavity DFB laser is used as a narrow linewidth light source, and the optical frequency is swept by minute modulation of the external cavity length. Long single mode optical fibers are characterized, and the maximum measurement range of 80 km is achieved, and the spatial resolutions of 46 m, 100 m and 2 km are achieved at 5 km, 11 km and 80 km distant, respectively. The Rayleigh backscattering is clearly measured and the propagation loss of optical fiber is also measured. The optical gain of an erbium-doped optical fiber amplifier (EDFA) is also estimated from the change in the Rayleigh backscattering level in the optical fiber followed after the EDFA.