A multi-terminal serial optical link(MSOL) achieves very simple and cost effective radio cell configurations because only one pair of fibers is needed. In addition, low cost Fabry-Perot laser diodes(FP-LDs) can be employed. MSOL has a substantial problem in that the beat noise degrades the C/N in the up-link. To reduce this noise, we propose using an automatic wavelength-offset control(AWOC) circuit. The AWOC circuit offsets the LD wavelength by controlling the laser bias current to minimise the RF band beat noise which is inherent in MSOL systems, and enables high C/N optical-microwave transmission. An experimental MSOL consisting of 5 radio access stations, each equipped with AWOC, is constructed to estimate the noise free dynamic range for 800-MHz 20-carrier signal transmission. The up-link comprises a single mode fiber connecting five 1.3-µm FP-LDs operating at 0.2 mW. The down-link consists of a single mode fiber and one 1.3-µm Distributed Feedback type Laser Diode(DFB-LD) emitting at 4.0 mW. The experimental device achieves over 15 dB noise reduction compared to MSOL without AWOC in the temperature range of 0 to 40
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Toshiyuki FUTAKATA, Yoshiaki TARUSAWA, Yasushi ITO, Toshio NOJIMA, "Noise Reduction Device Using Novel Automatic Wavelength-Offset Control for Highly Stable Optical-Microwave Transmission Systems" in IEICE TRANSACTIONS on Electronics,
vol. E79-C, no. 5, pp. 657-663, May 1996, doi: .
Abstract: A multi-terminal serial optical link(MSOL) achieves very simple and cost effective radio cell configurations because only one pair of fibers is needed. In addition, low cost Fabry-Perot laser diodes(FP-LDs) can be employed. MSOL has a substantial problem in that the beat noise degrades the C/N in the up-link. To reduce this noise, we propose using an automatic wavelength-offset control(AWOC) circuit. The AWOC circuit offsets the LD wavelength by controlling the laser bias current to minimise the RF band beat noise which is inherent in MSOL systems, and enables high C/N optical-microwave transmission. An experimental MSOL consisting of 5 radio access stations, each equipped with AWOC, is constructed to estimate the noise free dynamic range for 800-MHz 20-carrier signal transmission. The up-link comprises a single mode fiber connecting five 1.3-µm FP-LDs operating at 0.2 mW. The down-link consists of a single mode fiber and one 1.3-µm Distributed Feedback type Laser Diode(DFB-LD) emitting at 4.0 mW. The experimental device achieves over 15 dB noise reduction compared to MSOL without AWOC in the temperature range of 0 to 40
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e79-c_5_657/_p
Copy
@ARTICLE{e79-c_5_657,
author={Toshiyuki FUTAKATA, Yoshiaki TARUSAWA, Yasushi ITO, Toshio NOJIMA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Noise Reduction Device Using Novel Automatic Wavelength-Offset Control for Highly Stable Optical-Microwave Transmission Systems},
year={1996},
volume={E79-C},
number={5},
pages={657-663},
abstract={A multi-terminal serial optical link(MSOL) achieves very simple and cost effective radio cell configurations because only one pair of fibers is needed. In addition, low cost Fabry-Perot laser diodes(FP-LDs) can be employed. MSOL has a substantial problem in that the beat noise degrades the C/N in the up-link. To reduce this noise, we propose using an automatic wavelength-offset control(AWOC) circuit. The AWOC circuit offsets the LD wavelength by controlling the laser bias current to minimise the RF band beat noise which is inherent in MSOL systems, and enables high C/N optical-microwave transmission. An experimental MSOL consisting of 5 radio access stations, each equipped with AWOC, is constructed to estimate the noise free dynamic range for 800-MHz 20-carrier signal transmission. The up-link comprises a single mode fiber connecting five 1.3-µm FP-LDs operating at 0.2 mW. The down-link consists of a single mode fiber and one 1.3-µm Distributed Feedback type Laser Diode(DFB-LD) emitting at 4.0 mW. The experimental device achieves over 15 dB noise reduction compared to MSOL without AWOC in the temperature range of 0 to 40
keywords={},
doi={},
ISSN={},
month={May},}
Copy
TY - JOUR
TI - Noise Reduction Device Using Novel Automatic Wavelength-Offset Control for Highly Stable Optical-Microwave Transmission Systems
T2 - IEICE TRANSACTIONS on Electronics
SP - 657
EP - 663
AU - Toshiyuki FUTAKATA
AU - Yoshiaki TARUSAWA
AU - Yasushi ITO
AU - Toshio NOJIMA
PY - 1996
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E79-C
IS - 5
JA - IEICE TRANSACTIONS on Electronics
Y1 - May 1996
AB - A multi-terminal serial optical link(MSOL) achieves very simple and cost effective radio cell configurations because only one pair of fibers is needed. In addition, low cost Fabry-Perot laser diodes(FP-LDs) can be employed. MSOL has a substantial problem in that the beat noise degrades the C/N in the up-link. To reduce this noise, we propose using an automatic wavelength-offset control(AWOC) circuit. The AWOC circuit offsets the LD wavelength by controlling the laser bias current to minimise the RF band beat noise which is inherent in MSOL systems, and enables high C/N optical-microwave transmission. An experimental MSOL consisting of 5 radio access stations, each equipped with AWOC, is constructed to estimate the noise free dynamic range for 800-MHz 20-carrier signal transmission. The up-link comprises a single mode fiber connecting five 1.3-µm FP-LDs operating at 0.2 mW. The down-link consists of a single mode fiber and one 1.3-µm Distributed Feedback type Laser Diode(DFB-LD) emitting at 4.0 mW. The experimental device achieves over 15 dB noise reduction compared to MSOL without AWOC in the temperature range of 0 to 40
ER -