Excitonic optical properties of GaN homoepitaxial layers have been studied by means of magneto-luminescence and time-resolved luminescence spectroscopy. The luminescence lines due to the radiative recombination of excitons bound to neutral donors and acceptors have been measured under magnetic field up to 8 T, which was aligned perpendicular and parallel to the hexagonal c-axis. Under the magnetic field aligned perpendicular to the hexagonal c-axis, both the donor- and acceptor-bound-exciton lines clearly split into two components, which originated from the Zeeman splitting. The effective g-factors for both the donor- and acceptor-bound excitons were estimated to be 2.02 and 2.47, respectively. Under the magnetic field aligned parallel to the hexagonal c-axis, slight broadening of the bound-exciton lines was observed and the Zeeman splitting was too small to be detected. On the other hand, the diamagnetic shift for both the donor- and acceptor-bound-exciton luminescence lines was observed under the magnetic field aligned both perpendicular and parallel to the hexagonal c-axis. It was found that the diamagnetic shift of the donor-bound exciton was smaller than that of the acceptor-bound exciton. Furthermore, recombination dynamics of excitonic transitions was measured under high-density excitation. An excitation-density-dependent transition of the dominant radiative recombination process from donor-bound excitons to biexcitons was clearly observed in the temporal behavior. In addition, double-exponential decay of biexciton luminescence was observed, which is one of the characteristics of biexciton luminescence at high excitation densities.
Yoichi YAMADA
Chiharu SASAKI
Yohei YOSHIDA
Satoshi KURAI
Tsunemasa TAGUCHI
Tomoya SUGAHARA
Katsushi NISHINO
Shiro SAKAI
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yoichi YAMADA, Chiharu SASAKI, Yohei YOSHIDA, Satoshi KURAI, Tsunemasa TAGUCHI, Tomoya SUGAHARA, Katsushi NISHINO, Shiro SAKAI, "Optical Properties of Bound Excitons and Biexcitons in GaN" in IEICE TRANSACTIONS on Electronics,
vol. E83-C, no. 4, pp. 605-611, April 2000, doi: .
Abstract: Excitonic optical properties of GaN homoepitaxial layers have been studied by means of magneto-luminescence and time-resolved luminescence spectroscopy. The luminescence lines due to the radiative recombination of excitons bound to neutral donors and acceptors have been measured under magnetic field up to 8 T, which was aligned perpendicular and parallel to the hexagonal c-axis. Under the magnetic field aligned perpendicular to the hexagonal c-axis, both the donor- and acceptor-bound-exciton lines clearly split into two components, which originated from the Zeeman splitting. The effective g-factors for both the donor- and acceptor-bound excitons were estimated to be 2.02 and 2.47, respectively. Under the magnetic field aligned parallel to the hexagonal c-axis, slight broadening of the bound-exciton lines was observed and the Zeeman splitting was too small to be detected. On the other hand, the diamagnetic shift for both the donor- and acceptor-bound-exciton luminescence lines was observed under the magnetic field aligned both perpendicular and parallel to the hexagonal c-axis. It was found that the diamagnetic shift of the donor-bound exciton was smaller than that of the acceptor-bound exciton. Furthermore, recombination dynamics of excitonic transitions was measured under high-density excitation. An excitation-density-dependent transition of the dominant radiative recombination process from donor-bound excitons to biexcitons was clearly observed in the temporal behavior. In addition, double-exponential decay of biexciton luminescence was observed, which is one of the characteristics of biexciton luminescence at high excitation densities.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e83-c_4_605/_p
Copy
@ARTICLE{e83-c_4_605,
author={Yoichi YAMADA, Chiharu SASAKI, Yohei YOSHIDA, Satoshi KURAI, Tsunemasa TAGUCHI, Tomoya SUGAHARA, Katsushi NISHINO, Shiro SAKAI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Optical Properties of Bound Excitons and Biexcitons in GaN},
year={2000},
volume={E83-C},
number={4},
pages={605-611},
abstract={Excitonic optical properties of GaN homoepitaxial layers have been studied by means of magneto-luminescence and time-resolved luminescence spectroscopy. The luminescence lines due to the radiative recombination of excitons bound to neutral donors and acceptors have been measured under magnetic field up to 8 T, which was aligned perpendicular and parallel to the hexagonal c-axis. Under the magnetic field aligned perpendicular to the hexagonal c-axis, both the donor- and acceptor-bound-exciton lines clearly split into two components, which originated from the Zeeman splitting. The effective g-factors for both the donor- and acceptor-bound excitons were estimated to be 2.02 and 2.47, respectively. Under the magnetic field aligned parallel to the hexagonal c-axis, slight broadening of the bound-exciton lines was observed and the Zeeman splitting was too small to be detected. On the other hand, the diamagnetic shift for both the donor- and acceptor-bound-exciton luminescence lines was observed under the magnetic field aligned both perpendicular and parallel to the hexagonal c-axis. It was found that the diamagnetic shift of the donor-bound exciton was smaller than that of the acceptor-bound exciton. Furthermore, recombination dynamics of excitonic transitions was measured under high-density excitation. An excitation-density-dependent transition of the dominant radiative recombination process from donor-bound excitons to biexcitons was clearly observed in the temporal behavior. In addition, double-exponential decay of biexciton luminescence was observed, which is one of the characteristics of biexciton luminescence at high excitation densities.},
keywords={},
doi={},
ISSN={},
month={April},}
Copy
TY - JOUR
TI - Optical Properties of Bound Excitons and Biexcitons in GaN
T2 - IEICE TRANSACTIONS on Electronics
SP - 605
EP - 611
AU - Yoichi YAMADA
AU - Chiharu SASAKI
AU - Yohei YOSHIDA
AU - Satoshi KURAI
AU - Tsunemasa TAGUCHI
AU - Tomoya SUGAHARA
AU - Katsushi NISHINO
AU - Shiro SAKAI
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E83-C
IS - 4
JA - IEICE TRANSACTIONS on Electronics
Y1 - April 2000
AB - Excitonic optical properties of GaN homoepitaxial layers have been studied by means of magneto-luminescence and time-resolved luminescence spectroscopy. The luminescence lines due to the radiative recombination of excitons bound to neutral donors and acceptors have been measured under magnetic field up to 8 T, which was aligned perpendicular and parallel to the hexagonal c-axis. Under the magnetic field aligned perpendicular to the hexagonal c-axis, both the donor- and acceptor-bound-exciton lines clearly split into two components, which originated from the Zeeman splitting. The effective g-factors for both the donor- and acceptor-bound excitons were estimated to be 2.02 and 2.47, respectively. Under the magnetic field aligned parallel to the hexagonal c-axis, slight broadening of the bound-exciton lines was observed and the Zeeman splitting was too small to be detected. On the other hand, the diamagnetic shift for both the donor- and acceptor-bound-exciton luminescence lines was observed under the magnetic field aligned both perpendicular and parallel to the hexagonal c-axis. It was found that the diamagnetic shift of the donor-bound exciton was smaller than that of the acceptor-bound exciton. Furthermore, recombination dynamics of excitonic transitions was measured under high-density excitation. An excitation-density-dependent transition of the dominant radiative recombination process from donor-bound excitons to biexcitons was clearly observed in the temporal behavior. In addition, double-exponential decay of biexciton luminescence was observed, which is one of the characteristics of biexciton luminescence at high excitation densities.
ER -