Copy
Hironori WAKANA, Masaki FUJIBAYASHI, Noriyoshi FUSHIMI, Osamu MICHIKAMI, "Recovery Treatment for EuBa2Cu3O 7-δ Films with Insulating Multilayers" in IEICE TRANSACTIONS on Electronics,
vol. E85-C, no. 3, pp. 780-783, March 2002, doi: .
Abstract: By depositing insulating layers on oxide superconducting films, the films generally deteriorate. When an insulating multilayer of CeO2(50 )SrTiO3(200 ) was grown on 800--thick EuBa2Cu3O 7-δ (EBCO) films with Tce's (Tc endpoint) above 90 K, the films exhibited Tce's of about 40 K. Recovery of the deteriorated films was carried out by two treatment methods. A pure oxygen treatment, where the deteriorated films were annealed at a temperature (Tsa) of 550C and an oxygen pressure (PO2) of 100 kPa for 60 min, and then naturally cooled, restored the films with Tce's of about 60 K. An activated oxygen plasma (AOP) treatment, where the deteriorated films were exposed to oxygen plasma at a Tsa=550C for 40 min and subsequently oxygen gas was introduced into the chamber up to 2 kPa and then naturally cooled, restored the films with Tce's of about 84 K. The AOP-treated film was recovered with a cooling rate of less than 6.8C/min, and exhibited Tce of 90 K. The AOP-treated film took in oxygen more effectively than the pure oxygen-treated film with the cooling process at less than PO2=100 kPa.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e85-c_3_780/_p
Copy
@ARTICLE{e85-c_3_780,
author={Hironori WAKANA, Masaki FUJIBAYASHI, Noriyoshi FUSHIMI, Osamu MICHIKAMI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Recovery Treatment for EuBa2Cu3O 7-δ Films with Insulating Multilayers},
year={2002},
volume={E85-C},
number={3},
pages={780-783},
abstract={By depositing insulating layers on oxide superconducting films, the films generally deteriorate. When an insulating multilayer of CeO2(50 )SrTiO3(200 ) was grown on 800--thick EuBa2Cu3O 7-δ (EBCO) films with Tce's (Tc endpoint) above 90 K, the films exhibited Tce's of about 40 K. Recovery of the deteriorated films was carried out by two treatment methods. A pure oxygen treatment, where the deteriorated films were annealed at a temperature (Tsa) of 550C and an oxygen pressure (PO2) of 100 kPa for 60 min, and then naturally cooled, restored the films with Tce's of about 60 K. An activated oxygen plasma (AOP) treatment, where the deteriorated films were exposed to oxygen plasma at a Tsa=550C for 40 min and subsequently oxygen gas was introduced into the chamber up to 2 kPa and then naturally cooled, restored the films with Tce's of about 84 K. The AOP-treated film was recovered with a cooling rate of less than 6.8C/min, and exhibited Tce of 90 K. The AOP-treated film took in oxygen more effectively than the pure oxygen-treated film with the cooling process at less than PO2=100 kPa.},
keywords={},
doi={},
ISSN={},
month={March},}
Copy
TY - JOUR
TI - Recovery Treatment for EuBa2Cu3O 7-δ Films with Insulating Multilayers
T2 - IEICE TRANSACTIONS on Electronics
SP - 780
EP - 783
AU - Hironori WAKANA
AU - Masaki FUJIBAYASHI
AU - Noriyoshi FUSHIMI
AU - Osamu MICHIKAMI
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E85-C
IS - 3
JA - IEICE TRANSACTIONS on Electronics
Y1 - March 2002
AB - By depositing insulating layers on oxide superconducting films, the films generally deteriorate. When an insulating multilayer of CeO2(50 )SrTiO3(200 ) was grown on 800--thick EuBa2Cu3O 7-δ (EBCO) films with Tce's (Tc endpoint) above 90 K, the films exhibited Tce's of about 40 K. Recovery of the deteriorated films was carried out by two treatment methods. A pure oxygen treatment, where the deteriorated films were annealed at a temperature (Tsa) of 550C and an oxygen pressure (PO2) of 100 kPa for 60 min, and then naturally cooled, restored the films with Tce's of about 60 K. An activated oxygen plasma (AOP) treatment, where the deteriorated films were exposed to oxygen plasma at a Tsa=550C for 40 min and subsequently oxygen gas was introduced into the chamber up to 2 kPa and then naturally cooled, restored the films with Tce's of about 84 K. The AOP-treated film was recovered with a cooling rate of less than 6.8C/min, and exhibited Tce of 90 K. The AOP-treated film took in oxygen more effectively than the pure oxygen-treated film with the cooling process at less than PO2=100 kPa.
ER -