The search functionality is under construction.
The search functionality is under construction.

Automatic Generation of Compact Electro-Thermal Models for Semiconductor Devices

Tamara BECHTOLD, Evgenii B. RUDNYI, Jan G. KORVINK

  • Full Text Views

    0

  • Cite this

Summary :

A high power dissipation density in today's miniature electronic/mechanical systems makes on-chip thermal management very important. In order to achieve quick to evaluate, yet accurate electro-thermal models, needed for the thermal management of microsystems, a model order reduction is necessary. In this paper, we present an automatic, Krylov-subspace-based order reduction of a electro-thermal model, which we illustrate by a novel type of micropropulsion device. Numerical simulation results of the full finite element model and the reduced order model, that describes the transient electro-thermal behavior, are presented. A comparison between Krylov-subspace-based order reduction, order reduction using control theoretical approaches and commercially available reduced order modeling has been performed. A Single-Input-Single-Output setup for the Arnoldi reduction algorithm was proved to be sufficient to accurately represent the complete time-dependent temperature distribution of the device.

Publication
IEICE TRANSACTIONS on Electronics Vol.E86-C No.3 pp.459-465
Publication Date
2003/03/01
Publicized
Online ISSN
DOI
Type of Manuscript
Special Section PAPER (Special Issue on the 2002 IEEE International Conference on Simulation of Semiconductor Processes and Devices (SISPAD'02))
Category

Authors

Keyword