Decreased power dissipation and transient voltage drops in CMOS power distribution networks are important for high-speed deep submicrometer CMOS integrated circuits. In this paper, three CMOS buffers based on the charge-transfer, split-path and bootstrapped techniques to reduce the power dissipation and transient voltage drop in power supply are proposed. First, the inverted-delay-unit is used in the low-power inverted-delay-unit (LPID) CMOS buffer to eliminate the short-circuit current of the output stage. Second, the low-swing bootstrapped feedback-controlled split-path (LBFS) CMOS buffer is proposed to eliminate the short-circuit current of the output stage by using the feedback-controlled split-path method. The dynamic power dissipation of the LBFS CMOS buffer can be reduced by limiting the gate voltage swing of the output stage. Moreover, the propagation delay of the LBFS CMOS buffer is also reduced by non-full-swing gate voltage of the output stage. Third, the charge-recovery scheme is used in the charge-transfer feedback-controlled 4-split-path (CRFS) CMOS buffer to recovery and pull up the gate voltage of the output stage for reducing power-delay product and power line noise. Based on HSPICE simulation results, the power-delay product and the transient voltage drop in power supply of the proposed three CMOS buffers can be reduced by 20% to 40% as compared to conventional CMOS tapered buffer under various capacitive load.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kuo-Hsing CHENG, Wei-Bin YANG, "Circuit Analysis and Design of Low-Power CMOS Tapered Buffer" in IEICE TRANSACTIONS on Electronics,
vol. E86-C, no. 5, pp. 850-858, May 2003, doi: .
Abstract: Decreased power dissipation and transient voltage drops in CMOS power distribution networks are important for high-speed deep submicrometer CMOS integrated circuits. In this paper, three CMOS buffers based on the charge-transfer, split-path and bootstrapped techniques to reduce the power dissipation and transient voltage drop in power supply are proposed. First, the inverted-delay-unit is used in the low-power inverted-delay-unit (LPID) CMOS buffer to eliminate the short-circuit current of the output stage. Second, the low-swing bootstrapped feedback-controlled split-path (LBFS) CMOS buffer is proposed to eliminate the short-circuit current of the output stage by using the feedback-controlled split-path method. The dynamic power dissipation of the LBFS CMOS buffer can be reduced by limiting the gate voltage swing of the output stage. Moreover, the propagation delay of the LBFS CMOS buffer is also reduced by non-full-swing gate voltage of the output stage. Third, the charge-recovery scheme is used in the charge-transfer feedback-controlled 4-split-path (CRFS) CMOS buffer to recovery and pull up the gate voltage of the output stage for reducing power-delay product and power line noise. Based on HSPICE simulation results, the power-delay product and the transient voltage drop in power supply of the proposed three CMOS buffers can be reduced by 20% to 40% as compared to conventional CMOS tapered buffer under various capacitive load.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e86-c_5_850/_p
Copy
@ARTICLE{e86-c_5_850,
author={Kuo-Hsing CHENG, Wei-Bin YANG, },
journal={IEICE TRANSACTIONS on Electronics},
title={Circuit Analysis and Design of Low-Power CMOS Tapered Buffer},
year={2003},
volume={E86-C},
number={5},
pages={850-858},
abstract={Decreased power dissipation and transient voltage drops in CMOS power distribution networks are important for high-speed deep submicrometer CMOS integrated circuits. In this paper, three CMOS buffers based on the charge-transfer, split-path and bootstrapped techniques to reduce the power dissipation and transient voltage drop in power supply are proposed. First, the inverted-delay-unit is used in the low-power inverted-delay-unit (LPID) CMOS buffer to eliminate the short-circuit current of the output stage. Second, the low-swing bootstrapped feedback-controlled split-path (LBFS) CMOS buffer is proposed to eliminate the short-circuit current of the output stage by using the feedback-controlled split-path method. The dynamic power dissipation of the LBFS CMOS buffer can be reduced by limiting the gate voltage swing of the output stage. Moreover, the propagation delay of the LBFS CMOS buffer is also reduced by non-full-swing gate voltage of the output stage. Third, the charge-recovery scheme is used in the charge-transfer feedback-controlled 4-split-path (CRFS) CMOS buffer to recovery and pull up the gate voltage of the output stage for reducing power-delay product and power line noise. Based on HSPICE simulation results, the power-delay product and the transient voltage drop in power supply of the proposed three CMOS buffers can be reduced by 20% to 40% as compared to conventional CMOS tapered buffer under various capacitive load.},
keywords={},
doi={},
ISSN={},
month={May},}
Copy
TY - JOUR
TI - Circuit Analysis and Design of Low-Power CMOS Tapered Buffer
T2 - IEICE TRANSACTIONS on Electronics
SP - 850
EP - 858
AU - Kuo-Hsing CHENG
AU - Wei-Bin YANG
PY - 2003
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E86-C
IS - 5
JA - IEICE TRANSACTIONS on Electronics
Y1 - May 2003
AB - Decreased power dissipation and transient voltage drops in CMOS power distribution networks are important for high-speed deep submicrometer CMOS integrated circuits. In this paper, three CMOS buffers based on the charge-transfer, split-path and bootstrapped techniques to reduce the power dissipation and transient voltage drop in power supply are proposed. First, the inverted-delay-unit is used in the low-power inverted-delay-unit (LPID) CMOS buffer to eliminate the short-circuit current of the output stage. Second, the low-swing bootstrapped feedback-controlled split-path (LBFS) CMOS buffer is proposed to eliminate the short-circuit current of the output stage by using the feedback-controlled split-path method. The dynamic power dissipation of the LBFS CMOS buffer can be reduced by limiting the gate voltage swing of the output stage. Moreover, the propagation delay of the LBFS CMOS buffer is also reduced by non-full-swing gate voltage of the output stage. Third, the charge-recovery scheme is used in the charge-transfer feedback-controlled 4-split-path (CRFS) CMOS buffer to recovery and pull up the gate voltage of the output stage for reducing power-delay product and power line noise. Based on HSPICE simulation results, the power-delay product and the transient voltage drop in power supply of the proposed three CMOS buffers can be reduced by 20% to 40% as compared to conventional CMOS tapered buffer under various capacitive load.
ER -