Full Text Views
101
A compact silicon photonic crystal waveguide (PCW) slow-light modulator is presented. The proposed modulator is capable of achieving a 64 Gbps bit-rate in a wide operating spectrum. The slow-light enhances the modulation efficiency in proportion to its group index ng. Two types of 200-µm-long PCW modulators are presented. These are low- and high-dispersion devices, which are implemented using a complementary metal-oxide-insulator process. The lattice-shifted PCW achieved low-dispersion slow-light and exhibited ng ≈ 20 with an operating spectrum Δλ ≈ 20 nm, in which the fluctuation of the extinction ratio is ±0.5 dB. The PCW device without the lattice shift exhibited high-dispersion, for which a large or small value of ng can be set on demand by changing the wavelength. It was found that for a large ng, the frequency response was degraded due to the electro-optic phase mismatch between the RF signals and slow-light even for such small-size modulators. Meander-line electrodes, which bypass and delay the RF signals to compensate for the phase mismatch, are proposed. A high cutoff frequency of 55 GHz was theoretically predicted, whereas the experimentally measured value was 38 GHz. A high-quality open eye pattern for a drive voltage of 1 V at 32 Gbps was observed. The clear eye pattern was maintained for 50-64 Gbps, although the drive voltage increased to 3.5-5.3 V. A preliminary operation of a 2-bits pulse amplitude modulation up to 100 Gbps was also attempted.
Yosuke HINAKURA
Yokohama National University
Hiroyuki ARAI
Yokohama National University
Toshihiko BABA
Yokohama National University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yosuke HINAKURA, Hiroyuki ARAI, Toshihiko BABA, "Development of a 64 Gbps Si Photonic Crystal Modulator" in IEICE TRANSACTIONS on Electronics,
vol. E103-C, no. 11, pp. 635-644, November 2020, doi: 10.1587/transele.2019OCP0004.
Abstract: A compact silicon photonic crystal waveguide (PCW) slow-light modulator is presented. The proposed modulator is capable of achieving a 64 Gbps bit-rate in a wide operating spectrum. The slow-light enhances the modulation efficiency in proportion to its group index ng. Two types of 200-µm-long PCW modulators are presented. These are low- and high-dispersion devices, which are implemented using a complementary metal-oxide-insulator process. The lattice-shifted PCW achieved low-dispersion slow-light and exhibited ng ≈ 20 with an operating spectrum Δλ ≈ 20 nm, in which the fluctuation of the extinction ratio is ±0.5 dB. The PCW device without the lattice shift exhibited high-dispersion, for which a large or small value of ng can be set on demand by changing the wavelength. It was found that for a large ng, the frequency response was degraded due to the electro-optic phase mismatch between the RF signals and slow-light even for such small-size modulators. Meander-line electrodes, which bypass and delay the RF signals to compensate for the phase mismatch, are proposed. A high cutoff frequency of 55 GHz was theoretically predicted, whereas the experimentally measured value was 38 GHz. A high-quality open eye pattern for a drive voltage of 1 V at 32 Gbps was observed. The clear eye pattern was maintained for 50-64 Gbps, although the drive voltage increased to 3.5-5.3 V. A preliminary operation of a 2-bits pulse amplitude modulation up to 100 Gbps was also attempted.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.2019OCP0004/_p
Copy
@ARTICLE{e103-c_11_635,
author={Yosuke HINAKURA, Hiroyuki ARAI, Toshihiko BABA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Development of a 64 Gbps Si Photonic Crystal Modulator},
year={2020},
volume={E103-C},
number={11},
pages={635-644},
abstract={A compact silicon photonic crystal waveguide (PCW) slow-light modulator is presented. The proposed modulator is capable of achieving a 64 Gbps bit-rate in a wide operating spectrum. The slow-light enhances the modulation efficiency in proportion to its group index ng. Two types of 200-µm-long PCW modulators are presented. These are low- and high-dispersion devices, which are implemented using a complementary metal-oxide-insulator process. The lattice-shifted PCW achieved low-dispersion slow-light and exhibited ng ≈ 20 with an operating spectrum Δλ ≈ 20 nm, in which the fluctuation of the extinction ratio is ±0.5 dB. The PCW device without the lattice shift exhibited high-dispersion, for which a large or small value of ng can be set on demand by changing the wavelength. It was found that for a large ng, the frequency response was degraded due to the electro-optic phase mismatch between the RF signals and slow-light even for such small-size modulators. Meander-line electrodes, which bypass and delay the RF signals to compensate for the phase mismatch, are proposed. A high cutoff frequency of 55 GHz was theoretically predicted, whereas the experimentally measured value was 38 GHz. A high-quality open eye pattern for a drive voltage of 1 V at 32 Gbps was observed. The clear eye pattern was maintained for 50-64 Gbps, although the drive voltage increased to 3.5-5.3 V. A preliminary operation of a 2-bits pulse amplitude modulation up to 100 Gbps was also attempted.},
keywords={},
doi={10.1587/transele.2019OCP0004},
ISSN={1745-1353},
month={November},}
Copy
TY - JOUR
TI - Development of a 64 Gbps Si Photonic Crystal Modulator
T2 - IEICE TRANSACTIONS on Electronics
SP - 635
EP - 644
AU - Yosuke HINAKURA
AU - Hiroyuki ARAI
AU - Toshihiko BABA
PY - 2020
DO - 10.1587/transele.2019OCP0004
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E103-C
IS - 11
JA - IEICE TRANSACTIONS on Electronics
Y1 - November 2020
AB - A compact silicon photonic crystal waveguide (PCW) slow-light modulator is presented. The proposed modulator is capable of achieving a 64 Gbps bit-rate in a wide operating spectrum. The slow-light enhances the modulation efficiency in proportion to its group index ng. Two types of 200-µm-long PCW modulators are presented. These are low- and high-dispersion devices, which are implemented using a complementary metal-oxide-insulator process. The lattice-shifted PCW achieved low-dispersion slow-light and exhibited ng ≈ 20 with an operating spectrum Δλ ≈ 20 nm, in which the fluctuation of the extinction ratio is ±0.5 dB. The PCW device without the lattice shift exhibited high-dispersion, for which a large or small value of ng can be set on demand by changing the wavelength. It was found that for a large ng, the frequency response was degraded due to the electro-optic phase mismatch between the RF signals and slow-light even for such small-size modulators. Meander-line electrodes, which bypass and delay the RF signals to compensate for the phase mismatch, are proposed. A high cutoff frequency of 55 GHz was theoretically predicted, whereas the experimentally measured value was 38 GHz. A high-quality open eye pattern for a drive voltage of 1 V at 32 Gbps was observed. The clear eye pattern was maintained for 50-64 Gbps, although the drive voltage increased to 3.5-5.3 V. A preliminary operation of a 2-bits pulse amplitude modulation up to 100 Gbps was also attempted.
ER -