Baoquan ZHONG Zhiqun CHENG Minshi JIA Bingxin LI Kun WANG Zhenghao YANG Zheming ZHU
Kazuya TADA
Suguru KURATOMI Satoshi USUI Yoko TATEWAKI Hiroaki USUI
Yoshihiro NAKA Masahiko NISHIMOTO Mitsuhiro YOKOTA
Hiroki Hoshino Kentaro Kusama Takayuki Arai
Tsuneki YAMASAKI
Kengo SUGAHARA
Cuong Manh BUI Hiroshi SHIRAI
Hiroyuki DEGUCHI Masataka OHIRA Mikio TSUJI
Hiroto Tochigi Masakazu Nakatani Ken-ichi Aoshima Mayumi Kawana Yuta Yamaguchi Kenji Machida Nobuhiko Funabashi Hideo Fujikake
Yuki Imamura Daiki Fujii Yuki Enomoto Yuichi Ueno Yosei Shibata Munehiro Kimura
Keiya IMORI Junya SEKIKAWA
Naoki KANDA Junya SEKIKAWA
Yongzhe Wei Zhongyuan Zhou Zhicheng Xue Shunyu Yao Haichun Wang
Mio TANIGUCHI Akito IGUCHI Yasuhide TSUJI
Kouji SHIBATA Masaki KOBAYASHI
Zhi Earn TAN Kenjiro MATSUMOTO Masaya TAKAGI Hiromasa SAEKI Masaya TAMURA
Misato ONISHI Kazuhiro YAMAGUCHI Yuji SAKAMOTO
Koya TANIKAWA Shun FUJII Soma KOGURE Shuya TANAKA Shun TASAKA Koshiro WADA Satoki KAWANISHI Takasumi TANABE
Shotaro SUGITANI Ryuichi NAKAJIMA Keita YOSHIDA Jun FURUTA Kazutoshi KOBAYASHI
Ryosuke Ichikawa Takumi Watanabe Hiroki Takatsuka Shiro Suyama Hirotsugu Yamamoto
Chan-Liang Wu Chih-Wen Lu
Umer FAROOQ Masayuki MORI Koichi MAEZAWA
Ryo ITO Sumio SUGISAKI Toshiyuki KAWAHARAMURA Tokiyoshi MATSUDA Hidenori KAWANISHI Mutsumi KIMURA
Paul Cain
Arie SETIAWAN Shu SATO Naruto YONEMOTO Hitoshi NOHMI Hiroshi MURATA
Seiichiro Izawa
Hang Liu Fei Wu
Keiji GOTO Toru KAWANO Ryohei NAKAMURA
Takahiro SASAKI Yukihiro KAMIYA
Xiang XIONG Wen LI Xiaohua TAN Yusheng HU
Tohgo HOSODA Kazuyuki SAITO
Yihan ZHU Takashi OHSAWA
Shengbao YU Fanze MENG Yihan SHEN Yuzhu HAO Haigen ZHOU
Koji KUDO Keita MORIMOTO Akito IGUCHI Yasuhide TSUJI
We propose a new design approach to improve the computational efficiency of an optimal design of optical waveguide devices utilizing coupled mode theory (CMT) and a neural network (NN). Recently, the NN has begun to be used for efficient optimal design of optical devices. In this paper, the eigenmode analysis required in the CMT is skipped by using the NN, and optimization with an evolutionary algorithm can be efficiently carried out. To verify usefulness of our approach, optimal design examples of a wavelength insensitive 3dB coupler, a 1 : 2 power splitter, and a wavelength demultiplexer are shown and their transmission properties obtained by the CMT with the NN (NN-CMT) are verified by comparing with those calculated by a finite element beam propagation method (FE-BPM).
Masato TOMIYASU Keita MORIMOTO Akito IGUCHI Yasuhide TSUJI
In this paper, we reformulate a sensitivity analysis method for function-expansion-based topology optimization method without using gray area. In the conventional approach based on function expansion method, permittivity distribution contains gray materials, which are intermediate materials between core and cladding ones, so as to let the permittivity differentiable with respect to design variables. Since this approach using gray area dose not express material boundary exactly, it is not desirable to apply this approach to design problems of strongly guiding waveguide devices, especially for plasmonic waveguides. In this study, we present function-expansion-method-based topology optimization without gray area. In this approach, use of gray area can be avoided by replacing the area integral of the derivative of the matrix with the line integral taking into acount the rate of boundary deviation with respect to design variables. We verify the validity of our approach through applying it to design problems of a T-branching power splitter and a mode order converter.
Jun SHIBAYAMA Sumire TAKAHASHI Junji YAMAUCHI Hisamatsu NAKANO
A grating consisting of a periodic array of InSb-coated dielectric cylinders on a substrate is analyzed at THz frequencies using the frequency-dependent finite-difference time-domain method based on the trapezoidal recursive convolution technique. The transmission characteristics of an infinite periodic array are investigated not only at normal incidence but also at oblique incidence. The incident field is shown to be coupled to the substrate due to the guided-mode resonance (GMR), indicating the practical application of a grating coupler. For the sensor application, the frequency shift of the transmission dip is investigated with attention to the variation of the background refractive index. It is found that the shift of the dip involving the surface plasmon resonance is almost ten times as large as that of the dip only from the GMR. We finally analyze a finite periodic array of the cylinders. The field radiation from the array is discussed, when the field propagates through the substrate. It is shown that the radiation direction can be controlled with the frequency of the propagating field.
Tsugumichi SHIBATA Yoshito KATO
Capacitive coupling of line coded and DC-balanced digital signals is often used to eliminate steady bias current flow between the systems or components in various communication systems. A multi-layer ceramic chip capacitor is promising for the capacitor of very broadband signal coupling because of its high frequency characteristics expected from the downsizing of the chip recent years. The lower limit of the coupling bandwidth is determined by the capacitance while the higher limit is affected by the parasitic inductance associated with the chip structure. In this paper, we investigate the coupling characteristics up to millimeter wave frequencies by the measurement and simulations. A phenomenon has been found in which the change in the current distribution in the chip structure occur at high frequencies and the coupling characteristics are improved compared to the prediction based on the conventional equivalent circuit model. A new equivalent circuit model of chip capacitor that can express the effect of the improvement has been proposed.
Ryosuke SUGA Satoshi KURODA Atsushi KEZUKA
Authors had proposed a hybrid electromagnetic field analysis method suitable for an airport surface so far. In this paper, the hybrid method is validated by measurements by using a 1/50 scale-model of an airport considering several layouts of the buildings and sloping ground. The measured power distributions agreed with the analyzed ones within 5 dB errors excepting null points and the null positions of the distribution is also estimated within one wavelength errors.
Masamune NOMURA Yuki NAKAMURA Hiroo TARAO Amane TAKEI
This paper describes the effectiveness of the geometric multi-grid method in a current density analysis using a numerical human body model. The scalar potential finite difference (SPFD) method is used as a numerical method for analyzing the current density inside a human body due to contact with charged objects in a low-frequency band, and research related to methods to solve faster large-scale simultaneous equations based on the SPFD method has been conducted. In previous research, the block incomplete Cholesky conjugate gradients (ICCG) method is proposed as an effective method to solve the simultaneous equations faster. However, even though the block ICCG method is used, many iterations are still needed. Therefore, in this study, we focus on the geometric multi-grid method as a method to solve the problem. We develop the geometric-multi-grid method and evaluate performances by comparing it with the block ICCG method in terms of computation time and the number of iterations. The results show that the number of iterations needed for the geometric multi-grid method is much less than that for the block ICCG method. In addition, the computation time is much shorter, depending on the number of threads and the number of coarse grids. Also, by using multi-color ordering, the parallel performance of the geometric multi-grid method can be greatly improved.
Yoshiki KAYANO Yoshio KAMI Fengchao XIAO
For actual multi-channel differential signaling system, the ideal balance or symmetrical topology cannot be established, and hence, an imbalance component is excited. However a theoretical analysis method of evaluating the voltage and current distribution on the differential-paired lines, which allows to anticipate EM radiation at the design stage and to study possible means for suppressing imbalance components, has not been implemented. To provide the basic considerations for electromagnetic (EM) radiation from practical asymmetrical differential-paired lines structure with equi-length routing used in high-speed board design, this paper newly proposes an analytical method for evaluating the voltage and current at any point on differential-paired lines by expressing the differential paired-lines with an equivalent source circuit and an equivalent load circuit. The proposed method can predict S-parameters, distributions of voltage and current and EM radiation with sufficient accuracy. In addition, the proposed method provides enough flexibility for different geometric parameters and can be used to develop physical insights and design guidelines. This study has successfully established a basic method to effectively predict signal integrity and EM interference issues on a differential-paired lines.
Zejun ZHANG Yasuhide TSUJI Masashi EGUCHI Chun-ping CHEN
A compact optical polarization converter (PC) based on slot waveguide has been proposed in this study. Utilizing the high refractive index contrast between a Si waveguide and SiO2 cladding on the silicon-on-insulator platform, the light beam can be strongly confined in a slot waveguide structure. The proposed PC consists of a square waveguide and an L-shape cover waveguide. Since the overall structure is symmetrically distributed along the axis rotated 45-degree from the horizontal direction, the optical axis of this PC lies in the direction with equi-angle from two orthogonally polarized modes of the input and output ends, which leads to a high polarization conversion efficiency (PCE). 3D FDTD simulation results illustrate that a TE-to-TM mode conversion is achieved with a device length of 8.2 µm, and the PCE exceeds 99.8%. The structural tolerance and wavelength dependence of the PC have also been discussed in detail.
Satomu YASUDA Yukihisa SUZUKI Keiji WADA
An active gate driver IC generates arbitrary switching waveform is proposed to reduce the switching loss, the voltage overshoot, and the electromagnetic interference (EMI) by optimizing the switching pattern. However, it is hard to find optimal switching pattern because the switching pattern has huge possible combinations. In this paper, the method to estimate the switching loss and the voltage overshoot from the switching pattern with neural network (NN) is proposed. The implemented NN model obtains reasonable learning results for data-sets.
Ryosuke OZAKI Tomohiro KAGAWA Tsuneki YAMASAKI
In this paper, we analyzed the pulse responses of dispersion medium with periodically conducting strips by using a fast inversion Laplace transform (FILT) method combined with point matching method (PMM) for both the TM and TE cases. Specifically, we investigated the influence of the width and number of the conducting strips on the pulse response and distribution of the electric field.
Yohei SOBU Shinsuke TANAKA Yu TANAKA
Silicon photonics technology is a promising candidate for small form factor transceivers that can be used in data-center applications. This technology has a small footprint, a low fabrication cost, and good temperature immunity. However, its main challenge is due to the high baud rate operation for optical modulators with a low power consumption. This paper investigates an all-Silicon Mach-Zehnder modulator based on the lumped-electrode optical phase shifters. These phase shifters are driven by a complementary metal oxide semiconductor (CMOS) inverter driver to achieve a low power optical transmitter. This architecture improves the power efficiency because an electrical digital-to-analog converter (DAC) and a linear driver are not required. In addition, the current only flows at the time of data transition. For this purpose, we use a PIN-diode phase shifter. These phase shifters have a large capacitance so the driving voltage can be reduced while maintaining an optical phase shift. On the other hand, this study integrates a passive resistance-capacitance (RC) equalizer with a PIN-phase shifter to expand the electro-optic (EO) bandwidth of a modulator. Therefore, the modulation efficiency and the EO bandwidth can be optimized by designing the capacitor of the RC equalizer. This paper reviews the recent progress for the high-speed operation of an all-Si PIN-RC modulator. This study introduces a metal-insulator-metal (MIM) structure for a capacitor with a passive RC equalizer to obtain a wider EO bandwidth. As a result, this investigation achieves an EO bandwidth of 35.7-37 GHz and a 70 Gbaud NRZ operation is confirmed.
Keijiro SUZUKI Ryotaro KONOIKE Satoshi SUDA Hiroyuki MATSUURA Shu NAMIKI Hitoshi KAWASHIMA Kazuhiro IKEDA
We review our research progress of multi-port optical switches based on the silicon photonics platform. Up to now, the maximum port-count is 32 input ports×32 output ports, in which transmissions of all paths were demonstrated. The switch topology is path-independent insertion-loss (PILOSS) which consists of an array of 2×2 element switches and intersections. The switch presented an average fiber-to-fiber insertion loss of 10.8 dB. Moreover, -20-dB crosstalk bandwidth of 14.2 nm was achieved with output-port-exchanged element switches, and an average polarization-dependent loss (PDL) of 3.2 dB was achieved with a non-duplicated polarization-diversity structure enabled by SiN overpass waveguides. In the 8×8 switch, we demonstrated wider than 100-nm bandwidth for less than -30-dB crosstalk with double Mach-Zehnder element switches, and less than 0.5 dB PDL with polarization diversity scheme which consisted of two switch matrices and fiber-type polarization beam splitters. Based on the switch performances described above, we discuss further improvement of switching performances.
Yosuke HINAKURA Hiroyuki ARAI Toshihiko BABA
A compact silicon photonic crystal waveguide (PCW) slow-light modulator is presented. The proposed modulator is capable of achieving a 64 Gbps bit-rate in a wide operating spectrum. The slow-light enhances the modulation efficiency in proportion to its group index ng. Two types of 200-µm-long PCW modulators are presented. These are low- and high-dispersion devices, which are implemented using a complementary metal-oxide-insulator process. The lattice-shifted PCW achieved low-dispersion slow-light and exhibited ng ≈ 20 with an operating spectrum Δλ ≈ 20 nm, in which the fluctuation of the extinction ratio is ±0.5 dB. The PCW device without the lattice shift exhibited high-dispersion, for which a large or small value of ng can be set on demand by changing the wavelength. It was found that for a large ng, the frequency response was degraded due to the electro-optic phase mismatch between the RF signals and slow-light even for such small-size modulators. Meander-line electrodes, which bypass and delay the RF signals to compensate for the phase mismatch, are proposed. A high cutoff frequency of 55 GHz was theoretically predicted, whereas the experimentally measured value was 38 GHz. A high-quality open eye pattern for a drive voltage of 1 V at 32 Gbps was observed. The clear eye pattern was maintained for 50-64 Gbps, although the drive voltage increased to 3.5-5.3 V. A preliminary operation of a 2-bits pulse amplitude modulation up to 100 Gbps was also attempted.
Toshiya MURAI Yuya SHOJI Nobuhiko NISHIYAMA Tetsuya MIZUMOTO
Magneto-optical (MO) switches operate with a dynamically applied magnetic field. The MO devices presented in this paper consist of microring resonators (MRRs) fabricated on amorphous silicon-on-garnet platform. Two types of MO switches with MRRs were developed. In the first type, the switching state is controlled by an external magnetic field component included in the device. By combination of MO and thermo-optic effects, wavelength tunable operation is possible without any additional heater, and broadband switching is achievable. The other type of switch is a self-holding optical switch integrated with an FeCoB thin-film magnet. The switching state is driven by the remanence of the integrated thin-film magnet, and the state is maintained without any power supply.
Daichi FURUBAYASHI Yuta KASHIWAGI Takanori SATO Tadashi KAWAI Akira ENOKIHARA Naokatsu YAMAMOTO Tetsuya KAWANISHI
A new structure of the electro-optic modulator to compensate the third-order intermodulation distortion (IMD3) is introduced. The modulator includes two Mach-Zehnder modulators (MZMs) operating with frequency chirp and the two modulated outputs are combined with an adequate phase difference. We revealed by theoretical analysis and numerical calculations that the IMD3 components in the receiver output could be selectively suppressed when the two MZMs operate with chirp parameters of opposite signs to each other. Spectral power of the IMD3 components in the proposed modulator was more than 15dB lower than that in a normal Mach-Zehnder modulator at modulation index between 0.15π and 0.25π rad. The IMD3 compensation properties of the proposed modulator was experimentally confirmed by using a dual parallel Mach-Zehnder modulator (DPMZM) structure. We designed and fabricated the modulator with the single-chip structure and the single-input operation by integrating with 180° hybrid coupler on the modulator substrate. Modulation signals were applied to each modulation electrode by the 180° hybrid coupler to set the chirp parameters of two MZMs of the DPMZM. The properties of the fabricated modulator were measured by using 10GHz two-tone signals. The performance of the IMD3 compensation agreed with that in the calculation. It was confirmed that the IMD3 compensation could be realized even by the fabricated modulator structure.
Hajime TANAKA Tsutomu ISHIKAWA Takashi KITAMURA Masataka WATANABE Ryuji YAMABI Ryo YAMAGUCHI Naoya KONO Takehiko KIKUCHI Morihiro SEKI Tomokazu KATSUYAMA Mitsuru EKAWA Hajime SHOJI
We fabricated an InP-based dual-polarization In-phase and Quadrature (DP-IQ) modulator consisting of a Mach-Zehnder (MZ) modulator array integrated with RF termination resistors and backside via holes for high-bandwidth coherent driver modulators and revealed its high reliability. These integrations allowed the chip size (Chip size: 4.4mm×3mm) to be reduced by 59% compared with the previous chip without these integrations, that is, the previous chip needed 8 chip-resistors for terminating RF signals and 12 RF electrode pads for the electrical connection with these resistors in a Signal-Ground-Signal configuration. This MZ modulator exhibited a 3-dB bandwidth of around 40 GHz as its electrical/optical response, which is sufficient for over 400 Gbit/s coherent transmission systems using 16-ary quadrature amplitude modulation (QAM) and 64QAM signals. Also, we investigated a rapid degradation which affects the reliability of InP-based DP-IQ modulators. This rapid degradation we called optical damage is caused by strong incident light power and a high reverse bias voltage condition at the entrance of an electrode in each arm of the MZ modulators. This rapid degradation makes it difficult to estimate the lifetime of the chip using an accelerated aging test, because the value of the breakdown voltage which induces optical damage varies considerably depending on conditions, such as light power, operation wavelength, and chip temperature. Therefore, we opted for the step stress test method to investigate the lifetime of the chip. As a result, we confirmed that optical damage occurred when photo-current density at the entrance of an electrode exceeded threshold current density and demonstrated that InP-based modulators did not degrade unless operation conditions reached threshold current density. This threshold current density was independent of incident light power, operation wavelength and chip temperature.
Yoshiki HAYAMA Katsumi NAKATSUHARA Shinta UCHIBORI Takeshi NISHIZAWA
Horizontal slot waveguides enable light to be strongly confined in thin regions. The strong confinement of light in the slot region offers the advantages of enhancing the interaction of light with matter and providing highly sensitive sensing devices. We theoretically investigated fundamental characteristics of horizontal slot waveguides using Nb2O5. The coupling coefficient between SiO2 slot and air slot waveguides was calculated. Characteristics of bending loss in slot waveguide were also analyzed. The etching conditions in reactive ion etching needed to obtain a sidewall with high verticality were studied. We propose a process for fabricating horizontal slot waveguides using Nb2O5 thin film deposition and selective etching of SiO2. Horizontal slot waveguides were fabricated that had an SiO2 slot of less than 30 nm SiO2. The propagated light passing through the slot waveguides was also obtained.
Ai YANAGIHARA Keita YAMAGUCHI Takashi GOH Kenya SUZUKI
We demonstrated a compact 16×16 multicast switch (MCS) made from a silica-based planar lightwave circuit (PLC). The switch utilizes a new electrical connection method based on surface mount technology (SMT). Five electrical connectors are soldered directly to the PLC by using the standard reflow process used for electrical devices. We reduced the chip size to half of one made with conventional wire bonding technology. We obtained satisfactory solder contacts and excellent switching properties. These results indicate that the proposed method is suitable for large-scale optical switches including MCSs, variable optical attenuators, dispersion compensators, and so on.
In recent years, deep neural network (DNN) has achieved considerable results on many artificial intelligence tasks, e.g. natural language processing. However, the computation complexity of DNN is extremely high. Furthermore, the performance of traditional von Neumann computing architecture has been slowing down due to the memory wall problem. Processing in memory (PIM), which places computation within memory and reduces the data movement, breaks the memory wall. ReRAM PIM is thought to be a available architecture for DNN accelerators. In this work, a novel design of ReRAM neuromorphic system is proposed to process DNN fully in array efficiently. The binary ReRAM array is composed of 2T2R storage cells and current mirror sense amplifiers. A dummy BL reference scheme is proposed for reference voltage generation. A binary DNN (BDNN) model is then constructed and optimized on MNIST dataset. The model reaches a validation accuracy of 96.33% and is deployed to the ReRAM PIM system. Co-design model optimization method between hardware device and software algorithm is proposed with the idea of utilizing hardware variance information as uncertainness in optimization procedure. This method is analyzed to achieve feasible hardware design and generalizable model. Deployed with such co-design model, ReRAM array processes DNN with high robustness against fabrication fluctuation.
The injection locking properties of rotary dissipative solitons developed in a closed traveling-wave field-effect transistor (TWFET) are examined. A TWFET can support the waveform-invariant propagation of solitary pulses called dissipative solitons (DS) by balancing dispersion, nonlinearity, dissipation, and field-effect transistor gain. Applying sinusoidal signals to the closed TWFET assumes the injection-locked behavior of the rotary DS; the solitons' velocity is autonomously tuned to match the rotation and external frequencies. This study clarifies the qualitative properties of injection-locked DS using numerical and experimental approaches.