The search functionality is under construction.

Author Search Result

[Author] Ryotaro KONOIKE(2hit)

1-2hit
  • Broadband Port-Selective Silicon Beam Scanning Device for Free-Space Optical Communication Open Access

    Yuki ATSUMI  Tomoya YOSHIDA  Ryosuke MATSUMOTO  Ryotaro KONOIKE  Youichi SAKAKIBARA  Takashi INOUE  Keijiro SUZUKI  

     
    INVITED PAPER

      Pubricized:
    2023/05/24
      Vol:
    E106-C No:11
      Page(s):
    739-747

    Indoor free space optical (FSO) communication technology that provides high-speed connectivity to edge users is expected to be introduced in the near future mobile communication system, where the silicon photonics solid-state beam scanning device is a promising tool because of its low cost, long-term reliability, and other beneficial properties. However, the current two-dimensional beam scanning devices using grating coupler arrays have difficulty in increasing the transmission capacity because of bandwidth regulation. To solve the problem, we have introduced a broadband surface optical coupler, “elephant coupler,” which has great potential for combining wavelength and spatial division multiplexing technologies into the beam scanning device, as an alternative to grating couplers. The prototype port-selective silicon beam scanning device fabricated using a 300 mm CMOS pilot line achieved broadband optical beam emission with a 1 dB-loss bandwidth of 40 nm and demonstrated beam scanning using an imaging lens. The device has also exhibited free-space signal transmission of non-return-to-zero on-off-keying signals at 10 Gbps over a wide wavelength range of 60 nm. In this paper, we present an overview of the developed beam scanning device. Furthermore, the theoretical design guidelines for indoor mobile FSO communication are discussed.

  • Strictly Non-Blocking Silicon Photonics Switches Open Access

    Keijiro SUZUKI  Ryotaro KONOIKE  Satoshi SUDA  Hiroyuki MATSUURA  Shu NAMIKI  Hitoshi KAWASHIMA  Kazuhiro IKEDA  

     
    INVITED PAPER

      Pubricized:
    2020/04/17
      Vol:
    E103-C No:11
      Page(s):
    627-634

    We review our research progress of multi-port optical switches based on the silicon photonics platform. Up to now, the maximum port-count is 32 input ports×32 output ports, in which transmissions of all paths were demonstrated. The switch topology is path-independent insertion-loss (PILOSS) which consists of an array of 2×2 element switches and intersections. The switch presented an average fiber-to-fiber insertion loss of 10.8 dB. Moreover, -20-dB crosstalk bandwidth of 14.2 nm was achieved with output-port-exchanged element switches, and an average polarization-dependent loss (PDL) of 3.2 dB was achieved with a non-duplicated polarization-diversity structure enabled by SiN overpass waveguides. In the 8×8 switch, we demonstrated wider than 100-nm bandwidth for less than -30-dB crosstalk with double Mach-Zehnder element switches, and less than 0.5 dB PDL with polarization diversity scheme which consisted of two switch matrices and fiber-type polarization beam splitters. Based on the switch performances described above, we discuss further improvement of switching performances.