The search functionality is under construction.

Author Search Result

[Author] Yuki ATSUMI(3hit)

1-3hit
  • Broadband Port-Selective Silicon Beam Scanning Device for Free-Space Optical Communication Open Access

    Yuki ATSUMI  Tomoya YOSHIDA  Ryosuke MATSUMOTO  Ryotaro KONOIKE  Youichi SAKAKIBARA  Takashi INOUE  Keijiro SUZUKI  

     
    INVITED PAPER

      Pubricized:
    2023/05/24
      Vol:
    E106-C No:11
      Page(s):
    739-747

    Indoor free space optical (FSO) communication technology that provides high-speed connectivity to edge users is expected to be introduced in the near future mobile communication system, where the silicon photonics solid-state beam scanning device is a promising tool because of its low cost, long-term reliability, and other beneficial properties. However, the current two-dimensional beam scanning devices using grating coupler arrays have difficulty in increasing the transmission capacity because of bandwidth regulation. To solve the problem, we have introduced a broadband surface optical coupler, “elephant coupler,” which has great potential for combining wavelength and spatial division multiplexing technologies into the beam scanning device, as an alternative to grating couplers. The prototype port-selective silicon beam scanning device fabricated using a 300 mm CMOS pilot line achieved broadband optical beam emission with a 1 dB-loss bandwidth of 40 nm and demonstrated beam scanning using an imaging lens. The device has also exhibited free-space signal transmission of non-return-to-zero on-off-keying signals at 10 Gbps over a wide wavelength range of 60 nm. In this paper, we present an overview of the developed beam scanning device. Furthermore, the theoretical design guidelines for indoor mobile FSO communication are discussed.

  • Athermal Wavelength Filters toward Optical Interconnection to LSIs

    Yuki ATSUMI  Manabu ODA  Joonhyun KANG  Nobuhiko NISHIYAMA  Shigehisa ARAI  

     
    PAPER

      Vol:
    E95-C No:2
      Page(s):
    229-236

    Photonic integrated circuits (PICs) produced by large-scale integration (LSI) on Si platforms have been intensively researched. Since thermal diffusion from the LSI logic layer is a serious obstacle to realizing a Si-based optical integrated circuit, we have proposed and realized athermal wavelength filters using Si slot waveguides embedded with benzocyclobutene (BCB). First, the athermal conditions were theoretically investigated by controlling the waveguide and gap width of the slot waveguides. In order to introduce the calculated waveguide structures to wavelength filters, the propagation losses and bending losses of the Si slot waveguides were evaluated. The propagation losses were measured to be 5.6 and 5.3 dB/cm for slot waveguide widths of 500 and 700 nm, respectively. Finally, athermal wavelength filters, a ring resonator, and a Mach-Zhender interferometer (MZI) with a slot waveguide width of 700 nm were designed and fabricated. Further, a temperature coefficient of -0.9 pm/K for the operating wavelength was achieved with the athermal MZI.

  • Si-Photonics-Based Layer-to-Layer Coupler Toward 3D Optical Interconnection Open Access

    Nobuhiko NISHIYAMA  JoonHyun KANG  Yuki KUNO  Kazuto ITOH  Yuki ATSUMI  Tomohiro AMEMIYA  Shigehisa ARAI  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    501-508

    To realize three-dimensional (3D) optical interconnection on large-scale integration (LSI) circuits, layer-to-layer couplers based on Si-photonics platform were reviewed. In terms of optical cross talk, more than 1 µm layer distance is required for 3D interconnection. To meet this requirement for the layer-to-layer optical coupler, we proposed two types of couplers: a pair of grating couplers with metal mirrors for multi-layer distance coupling and taper-type directional couplers for neighboring layer distance coupling. Both structures produced a high coupling efficiency with relatively compact (∼100 µm) device sizes with a complementary metal oxide semiconductor (CMOS) compatible fabrication process.