1-3hit |
Ai YANAGIHARA Keita YAMAGUCHI Takashi GOH Kenya SUZUKI
We demonstrated a compact 16×16 multicast switch (MCS) made from a silica-based planar lightwave circuit (PLC). The switch utilizes a new electrical connection method based on surface mount technology (SMT). Five electrical connectors are soldered directly to the PLC by using the standard reflow process used for electrical devices. We reduced the chip size to half of one made with conventional wire bonding technology. We obtained satisfactory solder contacts and excellent switching properties. These results indicate that the proposed method is suitable for large-scale optical switches including MCSs, variable optical attenuators, dispersion compensators, and so on.
Akira OTAKE Keita YAMAGUCHI Katsumasa KAMIYA Yasuteru SHIGETA Kenji SHIRAISHI
Due to the aggressive scaling of non-volatile memories, “charge-trap memories” such as MONOS-type memories become one of the most important targets. One of the merits of such MONOS-type memories is that they can trap charges inside atomic-scale defect sites in SiN layers. At the same time, however, charge traps with atomistic scale tend to induce additional large structural changes. Hydrogen has attracted a great attention as an important heteroatom in MONOS-type memories. We theoretically investigate the basic characteristics of hydrogen-defects in SiN layer in MONOS-type memories on the basis of the first-principles calculations. We find that SiN structures with a hydrogen impurity tend to reveal reversible structural change during program/erase operation.
Hiroki SHIRAKAWA Keita YAMAGUCHI Masaaki ARAIDAI Katsumasa KAMIYA Kenji SHIRAISHI
We demonstrate on the basis of ab initio calculations that metal-oxide-nitride-oxide-semiconductor (MONOS) memory is one of the most promising future high-density archive memories. We find that O related defects in a MONOS memory cause irreversible structural changes to the SiO2/Si3N4 interface at the atomistic level during program/erase (P/E) cycles. Carrier injection during the programming operation makes the structure energetically very stable, because all the O atoms in this structure take on three-fold-coordination. The estimated lifespan of the programmed state is of the order of a thousand years.