To realize a stable and efficient wireless power transfer (WPT) system that can be used in any environment, it is necessary to inspect the influence of environmental interference along the power transmission path of the WPT system. In this paper, attempts have been made to reduce the influence of the medium with a dielectric and conductive loss on the WPT system using spiral resonators for resonator-coupled type wireless power transfer (RC-WPT) system. An important element of the RC-WPT system is the resonators because they improve resonant characteristics by changing the shape or combination of spiral resonators to confine the electric field that mainly causes electrical loss in the system as much as possible inside the resonator. We proposed a novel dual-spiral resonator as a candidate and compared the basic characteristics of the RC-WPT system with conventional single-spiral and dual-spiral resonators. The parametric values of the spiral resonators, such as the quality factors and the coupling coefficients between resonators with and without a lossy medium in the power transmission path, were examined. For the lossy mediums, pure water or tap water filled with acryl bases was used. The maximum transmission efficiency of the RC-WPT system was then observed by tuning the matching condition of the system. Following that, the transmission efficiency of the system with and without lossy medium was investigated. These inspections revealed that the performance of the RC-WPT system with the lossy medium using the modified shape spiral resonator, which is the dual-spiral resonator proposed in our laboratory, outperformed the system using the conventional single-spiral resonator.
Nur Syafiera Azreen NORODIN
Yamaguchi University
Kousuke NAKAMURA
Yamaguchi University
Masashi HOTTA
Yamaguchi University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Nur Syafiera Azreen NORODIN, Kousuke NAKAMURA, Masashi HOTTA, "Effects of Lossy Mediums for Resonator-Coupled Type Wireless Power Transfer System using Conventional Single- and Dual-Spiral Resonators" in IEICE TRANSACTIONS on Electronics,
vol. E105-C, no. 3, pp. 110-117, March 2022, doi: 10.1587/transele.2021ECP5025.
Abstract: To realize a stable and efficient wireless power transfer (WPT) system that can be used in any environment, it is necessary to inspect the influence of environmental interference along the power transmission path of the WPT system. In this paper, attempts have been made to reduce the influence of the medium with a dielectric and conductive loss on the WPT system using spiral resonators for resonator-coupled type wireless power transfer (RC-WPT) system. An important element of the RC-WPT system is the resonators because they improve resonant characteristics by changing the shape or combination of spiral resonators to confine the electric field that mainly causes electrical loss in the system as much as possible inside the resonator. We proposed a novel dual-spiral resonator as a candidate and compared the basic characteristics of the RC-WPT system with conventional single-spiral and dual-spiral resonators. The parametric values of the spiral resonators, such as the quality factors and the coupling coefficients between resonators with and without a lossy medium in the power transmission path, were examined. For the lossy mediums, pure water or tap water filled with acryl bases was used. The maximum transmission efficiency of the RC-WPT system was then observed by tuning the matching condition of the system. Following that, the transmission efficiency of the system with and without lossy medium was investigated. These inspections revealed that the performance of the RC-WPT system with the lossy medium using the modified shape spiral resonator, which is the dual-spiral resonator proposed in our laboratory, outperformed the system using the conventional single-spiral resonator.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.2021ECP5025/_p
Copy
@ARTICLE{e105-c_3_110,
author={Nur Syafiera Azreen NORODIN, Kousuke NAKAMURA, Masashi HOTTA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Effects of Lossy Mediums for Resonator-Coupled Type Wireless Power Transfer System using Conventional Single- and Dual-Spiral Resonators},
year={2022},
volume={E105-C},
number={3},
pages={110-117},
abstract={To realize a stable and efficient wireless power transfer (WPT) system that can be used in any environment, it is necessary to inspect the influence of environmental interference along the power transmission path of the WPT system. In this paper, attempts have been made to reduce the influence of the medium with a dielectric and conductive loss on the WPT system using spiral resonators for resonator-coupled type wireless power transfer (RC-WPT) system. An important element of the RC-WPT system is the resonators because they improve resonant characteristics by changing the shape or combination of spiral resonators to confine the electric field that mainly causes electrical loss in the system as much as possible inside the resonator. We proposed a novel dual-spiral resonator as a candidate and compared the basic characteristics of the RC-WPT system with conventional single-spiral and dual-spiral resonators. The parametric values of the spiral resonators, such as the quality factors and the coupling coefficients between resonators with and without a lossy medium in the power transmission path, were examined. For the lossy mediums, pure water or tap water filled with acryl bases was used. The maximum transmission efficiency of the RC-WPT system was then observed by tuning the matching condition of the system. Following that, the transmission efficiency of the system with and without lossy medium was investigated. These inspections revealed that the performance of the RC-WPT system with the lossy medium using the modified shape spiral resonator, which is the dual-spiral resonator proposed in our laboratory, outperformed the system using the conventional single-spiral resonator.},
keywords={},
doi={10.1587/transele.2021ECP5025},
ISSN={1745-1353},
month={March},}
Copy
TY - JOUR
TI - Effects of Lossy Mediums for Resonator-Coupled Type Wireless Power Transfer System using Conventional Single- and Dual-Spiral Resonators
T2 - IEICE TRANSACTIONS on Electronics
SP - 110
EP - 117
AU - Nur Syafiera Azreen NORODIN
AU - Kousuke NAKAMURA
AU - Masashi HOTTA
PY - 2022
DO - 10.1587/transele.2021ECP5025
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E105-C
IS - 3
JA - IEICE TRANSACTIONS on Electronics
Y1 - March 2022
AB - To realize a stable and efficient wireless power transfer (WPT) system that can be used in any environment, it is necessary to inspect the influence of environmental interference along the power transmission path of the WPT system. In this paper, attempts have been made to reduce the influence of the medium with a dielectric and conductive loss on the WPT system using spiral resonators for resonator-coupled type wireless power transfer (RC-WPT) system. An important element of the RC-WPT system is the resonators because they improve resonant characteristics by changing the shape or combination of spiral resonators to confine the electric field that mainly causes electrical loss in the system as much as possible inside the resonator. We proposed a novel dual-spiral resonator as a candidate and compared the basic characteristics of the RC-WPT system with conventional single-spiral and dual-spiral resonators. The parametric values of the spiral resonators, such as the quality factors and the coupling coefficients between resonators with and without a lossy medium in the power transmission path, were examined. For the lossy mediums, pure water or tap water filled with acryl bases was used. The maximum transmission efficiency of the RC-WPT system was then observed by tuning the matching condition of the system. Following that, the transmission efficiency of the system with and without lossy medium was investigated. These inspections revealed that the performance of the RC-WPT system with the lossy medium using the modified shape spiral resonator, which is the dual-spiral resonator proposed in our laboratory, outperformed the system using the conventional single-spiral resonator.
ER -