The search functionality is under construction.

The search functionality is under construction.

Crosstalk between lines plays an important role in the transmission of signal. Hence it is of great significance to establish the transmission lines model accurately to evaluate factors affecting crosstalk coupling between lines and to improve the anti-interference capability of the system. As twisted-pair line is widely used for its unique twist structure which improves the anti-interference performance of cables, this paper presents a method of constructing transmission lines model of the shielded twisted-pair line (STP) with two twisted pairs based on S-parameters. Firstly, the transmission lines model of STP with one twisted pair is established. The establishment of distributed capacitance matrix of this model depends on the dielectric constant of insulation layer that surrounds a conductor, but the dielectric constant is often unknown. In this respect, a method to obtain the distributed capacitance matrix based on the S-parameters of this model is proposed. Due to twisting, there is a great deal of variability between the distribution parameters along the length of the STP. As the spatial distribution of conductors in the cross-section of twisted-pair line vary along with the cable length, the distribution parameters matrices also change as they move. The cable is divided into several segments, and the transmission lines model of STP is obtained with the cascade of each segment model. For the STP with two twisted pairs, the crosstalk between pairs is analyzed based on the mixed mode S-parameters. Combined with the transmission lines model of STP with one twisted pair, that of STP with two twisted pairs is obtained. The terminal response voltage can be calculated from the transmission lines model and cable terminal conditions. The validity of the transmission lines model is verified by the consistency between the terminal responses calculated by the model and by the simulated. As the theoretical and simulation results are compatible, the modeling method for the STP with two twisted pairs can be used for the STP with more twisted pairs. In practical engineering application, S-parameters and mixed mode S-parameters can be obtained by testing. That means the transmission lines model of STP can be established based on the test results.

- Publication
- IEICE TRANSACTIONS on Electronics Vol.E106-C No.3 pp.67-75

- Publication Date
- 2023/03/01

- Publicized
- 2022/10/13

- Online ISSN
- 1745-1353

- DOI
- 10.1587/transele.2022ECP5038

- Type of Manuscript
- PAPER

- Category
- Electromagnetic Theory

Xiang ZHOU

Southeast University

Xiaoyu LU

Southeast University

Weike WANG

Southeast University, Nanjing, China and the China Aviation Integrated Technology Research Institute

Jinjing REN

Southeast University

Yixing GU

Southeast University

The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.

Copy

Xiang ZHOU, Xiaoyu LU, Weike WANG, Jinjing REN, Yixing GU, "Establishment of Transmission Lines Model of Shielded Twisted-Pair Line" in IEICE TRANSACTIONS on Electronics,
vol. E106-C, no. 3, pp. 67-75, March 2023, doi: 10.1587/transele.2022ECP5038.

Abstract: Crosstalk between lines plays an important role in the transmission of signal. Hence it is of great significance to establish the transmission lines model accurately to evaluate factors affecting crosstalk coupling between lines and to improve the anti-interference capability of the system. As twisted-pair line is widely used for its unique twist structure which improves the anti-interference performance of cables, this paper presents a method of constructing transmission lines model of the shielded twisted-pair line (STP) with two twisted pairs based on S-parameters. Firstly, the transmission lines model of STP with one twisted pair is established. The establishment of distributed capacitance matrix of this model depends on the dielectric constant of insulation layer that surrounds a conductor, but the dielectric constant is often unknown. In this respect, a method to obtain the distributed capacitance matrix based on the S-parameters of this model is proposed. Due to twisting, there is a great deal of variability between the distribution parameters along the length of the STP. As the spatial distribution of conductors in the cross-section of twisted-pair line vary along with the cable length, the distribution parameters matrices also change as they move. The cable is divided into several segments, and the transmission lines model of STP is obtained with the cascade of each segment model. For the STP with two twisted pairs, the crosstalk between pairs is analyzed based on the mixed mode S-parameters. Combined with the transmission lines model of STP with one twisted pair, that of STP with two twisted pairs is obtained. The terminal response voltage can be calculated from the transmission lines model and cable terminal conditions. The validity of the transmission lines model is verified by the consistency between the terminal responses calculated by the model and by the simulated. As the theoretical and simulation results are compatible, the modeling method for the STP with two twisted pairs can be used for the STP with more twisted pairs. In practical engineering application, S-parameters and mixed mode S-parameters can be obtained by testing. That means the transmission lines model of STP can be established based on the test results.

URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.2022ECP5038/_p

Copy

@ARTICLE{e106-c_3_67,

author={Xiang ZHOU, Xiaoyu LU, Weike WANG, Jinjing REN, Yixing GU, },

journal={IEICE TRANSACTIONS on Electronics},

title={Establishment of Transmission Lines Model of Shielded Twisted-Pair Line},

year={2023},

volume={E106-C},

number={3},

pages={67-75},

abstract={Crosstalk between lines plays an important role in the transmission of signal. Hence it is of great significance to establish the transmission lines model accurately to evaluate factors affecting crosstalk coupling between lines and to improve the anti-interference capability of the system. As twisted-pair line is widely used for its unique twist structure which improves the anti-interference performance of cables, this paper presents a method of constructing transmission lines model of the shielded twisted-pair line (STP) with two twisted pairs based on S-parameters. Firstly, the transmission lines model of STP with one twisted pair is established. The establishment of distributed capacitance matrix of this model depends on the dielectric constant of insulation layer that surrounds a conductor, but the dielectric constant is often unknown. In this respect, a method to obtain the distributed capacitance matrix based on the S-parameters of this model is proposed. Due to twisting, there is a great deal of variability between the distribution parameters along the length of the STP. As the spatial distribution of conductors in the cross-section of twisted-pair line vary along with the cable length, the distribution parameters matrices also change as they move. The cable is divided into several segments, and the transmission lines model of STP is obtained with the cascade of each segment model. For the STP with two twisted pairs, the crosstalk between pairs is analyzed based on the mixed mode S-parameters. Combined with the transmission lines model of STP with one twisted pair, that of STP with two twisted pairs is obtained. The terminal response voltage can be calculated from the transmission lines model and cable terminal conditions. The validity of the transmission lines model is verified by the consistency between the terminal responses calculated by the model and by the simulated. As the theoretical and simulation results are compatible, the modeling method for the STP with two twisted pairs can be used for the STP with more twisted pairs. In practical engineering application, S-parameters and mixed mode S-parameters can be obtained by testing. That means the transmission lines model of STP can be established based on the test results.},

keywords={},

doi={10.1587/transele.2022ECP5038},

ISSN={1745-1353},

month={March},}

Copy

TY - JOUR

TI - Establishment of Transmission Lines Model of Shielded Twisted-Pair Line

T2 - IEICE TRANSACTIONS on Electronics

SP - 67

EP - 75

AU - Xiang ZHOU

AU - Xiaoyu LU

AU - Weike WANG

AU - Jinjing REN

AU - Yixing GU

PY - 2023

DO - 10.1587/transele.2022ECP5038

JO - IEICE TRANSACTIONS on Electronics

SN - 1745-1353

VL - E106-C

IS - 3

JA - IEICE TRANSACTIONS on Electronics

Y1 - March 2023

AB - Crosstalk between lines plays an important role in the transmission of signal. Hence it is of great significance to establish the transmission lines model accurately to evaluate factors affecting crosstalk coupling between lines and to improve the anti-interference capability of the system. As twisted-pair line is widely used for its unique twist structure which improves the anti-interference performance of cables, this paper presents a method of constructing transmission lines model of the shielded twisted-pair line (STP) with two twisted pairs based on S-parameters. Firstly, the transmission lines model of STP with one twisted pair is established. The establishment of distributed capacitance matrix of this model depends on the dielectric constant of insulation layer that surrounds a conductor, but the dielectric constant is often unknown. In this respect, a method to obtain the distributed capacitance matrix based on the S-parameters of this model is proposed. Due to twisting, there is a great deal of variability between the distribution parameters along the length of the STP. As the spatial distribution of conductors in the cross-section of twisted-pair line vary along with the cable length, the distribution parameters matrices also change as they move. The cable is divided into several segments, and the transmission lines model of STP is obtained with the cascade of each segment model. For the STP with two twisted pairs, the crosstalk between pairs is analyzed based on the mixed mode S-parameters. Combined with the transmission lines model of STP with one twisted pair, that of STP with two twisted pairs is obtained. The terminal response voltage can be calculated from the transmission lines model and cable terminal conditions. The validity of the transmission lines model is verified by the consistency between the terminal responses calculated by the model and by the simulated. As the theoretical and simulation results are compatible, the modeling method for the STP with two twisted pairs can be used for the STP with more twisted pairs. In practical engineering application, S-parameters and mixed mode S-parameters can be obtained by testing. That means the transmission lines model of STP can be established based on the test results.

ER -