1-4hit |
Xiang ZHOU Xiaoyu LU Weike WANG Jinjing REN Yixing GU
Crosstalk between lines plays an important role in the transmission of signal. Hence it is of great significance to establish the transmission lines model accurately to evaluate factors affecting crosstalk coupling between lines and to improve the anti-interference capability of the system. As twisted-pair line is widely used for its unique twist structure which improves the anti-interference performance of cables, this paper presents a method of constructing transmission lines model of the shielded twisted-pair line (STP) with two twisted pairs based on S-parameters. Firstly, the transmission lines model of STP with one twisted pair is established. The establishment of distributed capacitance matrix of this model depends on the dielectric constant of insulation layer that surrounds a conductor, but the dielectric constant is often unknown. In this respect, a method to obtain the distributed capacitance matrix based on the S-parameters of this model is proposed. Due to twisting, there is a great deal of variability between the distribution parameters along the length of the STP. As the spatial distribution of conductors in the cross-section of twisted-pair line vary along with the cable length, the distribution parameters matrices also change as they move. The cable is divided into several segments, and the transmission lines model of STP is obtained with the cascade of each segment model. For the STP with two twisted pairs, the crosstalk between pairs is analyzed based on the mixed mode S-parameters. Combined with the transmission lines model of STP with one twisted pair, that of STP with two twisted pairs is obtained. The terminal response voltage can be calculated from the transmission lines model and cable terminal conditions. The validity of the transmission lines model is verified by the consistency between the terminal responses calculated by the model and by the simulated. As the theoretical and simulation results are compatible, the modeling method for the STP with two twisted pairs can be used for the STP with more twisted pairs. In practical engineering application, S-parameters and mixed mode S-parameters can be obtained by testing. That means the transmission lines model of STP can be established based on the test results.
Yixing GU Zhongyuan ZHOU Yunfen CHANG Mingjie SHENG Qi ZHOU
This paper proposes a method in calculating the field distribution of the cross section in a transverse electromagnetic (TEM) cell based on the method of finite difference. Besides, E-field uniformity of the cross section is analyzed with the calculation results and the measured field strength. Analysis indicates that theoretical calculation via method proposed in this paper can guide the setup of E-field probes to some extent when it comes to the E-field uniformity analysis in a TEM cell.
Yang XIAO Zhongyuan ZHOU Xiang ZHOU Qi ZHOU Mingjie SHENG Yixing GU Mingliang YANG
This paper analyzes the typical functions of digital control circuit and its function modules, and develops a set of digital control circuit equipment based on Advanced RISC Machines (ARM) with typical function modules, including principle design, interference injection trace design, function design, and study the failure mode and threshold of typical function modules. Based on continuous wave (CW) and pulse wave, the direct power injection (DPI) method is used to test the conduction immunity of the digital control circuit, and the failure mode and sensitivity threshold of the digital control circuit are quantitatively obtained. This method can provide experimental verification for the immunity ability of the digital control circuit to different electromagnetic interference.
Qi ZHOU Zhongyuan ZHOU Yixing GU Mingjie SHENG Peng HU Yang XIAO
This paper introduces the working principle of continuous wave (CW) illuminator and selects the test space by developing the wave impedance selection algorithm for the CW illuminator. For the vertical polarization and the horizontal polarization of CW illuminator, the law of wave impedance distribution after loading is analyzed and the influence of loading distribution on test space selection is studied. The selection principle of wave impedance based on incident field or total field at the monitoring point is analyzed.