This paper deals with the diffraction of a transverse magnetic (TM) plane wave by a perfectly conductive periodic surface by an integral method. However, it is known that a conventional integral method does not work for a critical angle of incidence, because of divergence of a periodic Green's function (integral kernel). To overcome such a divergence difficulty, we introduce an image Green's function which is physically defined as a field radiated from an infinite phased array of dipoles. By use of the image Green's function, it is newly shown that the diffracted field is represented as a sum of radiation from the periodic surface and its image surface. Then, this paper obtains a new image integral equation for the basic surface current, which is solved numerically. A numerical result is illustrated for a very rough sinusoidal surface. Then, it is concluded that the method of image Green's function works practically even at a critical angle of incidence.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Junichi NAKAYAMA, Yasuhiko TAMURA, "Method of Image Green's Function in Grating Theory" in IEICE TRANSACTIONS on Electronics,
vol. E95-C, no. 1, pp. 93-96, January 2012, doi: 10.1587/transele.E95.C.93.
Abstract: This paper deals with the diffraction of a transverse magnetic (TM) plane wave by a perfectly conductive periodic surface by an integral method. However, it is known that a conventional integral method does not work for a critical angle of incidence, because of divergence of a periodic Green's function (integral kernel). To overcome such a divergence difficulty, we introduce an image Green's function which is physically defined as a field radiated from an infinite phased array of dipoles. By use of the image Green's function, it is newly shown that the diffracted field is represented as a sum of radiation from the periodic surface and its image surface. Then, this paper obtains a new image integral equation for the basic surface current, which is solved numerically. A numerical result is illustrated for a very rough sinusoidal surface. Then, it is concluded that the method of image Green's function works practically even at a critical angle of incidence.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E95.C.93/_p
Copy
@ARTICLE{e95-c_1_93,
author={Junichi NAKAYAMA, Yasuhiko TAMURA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Method of Image Green's Function in Grating Theory},
year={2012},
volume={E95-C},
number={1},
pages={93-96},
abstract={This paper deals with the diffraction of a transverse magnetic (TM) plane wave by a perfectly conductive periodic surface by an integral method. However, it is known that a conventional integral method does not work for a critical angle of incidence, because of divergence of a periodic Green's function (integral kernel). To overcome such a divergence difficulty, we introduce an image Green's function which is physically defined as a field radiated from an infinite phased array of dipoles. By use of the image Green's function, it is newly shown that the diffracted field is represented as a sum of radiation from the periodic surface and its image surface. Then, this paper obtains a new image integral equation for the basic surface current, which is solved numerically. A numerical result is illustrated for a very rough sinusoidal surface. Then, it is concluded that the method of image Green's function works practically even at a critical angle of incidence.},
keywords={},
doi={10.1587/transele.E95.C.93},
ISSN={1745-1353},
month={January},}
Copy
TY - JOUR
TI - Method of Image Green's Function in Grating Theory
T2 - IEICE TRANSACTIONS on Electronics
SP - 93
EP - 96
AU - Junichi NAKAYAMA
AU - Yasuhiko TAMURA
PY - 2012
DO - 10.1587/transele.E95.C.93
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E95-C
IS - 1
JA - IEICE TRANSACTIONS on Electronics
Y1 - January 2012
AB - This paper deals with the diffraction of a transverse magnetic (TM) plane wave by a perfectly conductive periodic surface by an integral method. However, it is known that a conventional integral method does not work for a critical angle of incidence, because of divergence of a periodic Green's function (integral kernel). To overcome such a divergence difficulty, we introduce an image Green's function which is physically defined as a field radiated from an infinite phased array of dipoles. By use of the image Green's function, it is newly shown that the diffracted field is represented as a sum of radiation from the periodic surface and its image surface. Then, this paper obtains a new image integral equation for the basic surface current, which is solved numerically. A numerical result is illustrated for a very rough sinusoidal surface. Then, it is concluded that the method of image Green's function works practically even at a critical angle of incidence.
ER -