This paper proposes two linearity enhancement techniques for open-loop amplifiers. One technique is nonlinearity cancellation. An amplifier with reversed nonlinearity is proposed to cascade with a conventional common source amplifier. The product of these two nonlinear gains demonstrates much higher linearity. It achieves a SFDR of 71 dB when differential output range is 600 mV. Compared with the conventional common source amplifier, about 24 dB improvement is achieved. Another proposed technique is gain adapting. An input amplitude detector utilizing second order nonlinearity is combined with a source-degenerated amplifier. It can adjust the gain automatically according to the input amplitude, and compensate the gain compression when the input amplitude becomes larger. A SFDR of 69 dB is realized when the differential output range is 600 mV. An improvement of 23 dB is achieved after gain is adapted. Furthermore, mismatch calibration for the two proposed linearity enhancement techniques is investigated. Finally, comparison between two proposed amplifiers is introduced. The amplifier with nonlinearity cancellation has advantage in large signal range while the amplifier utilizing gain adapting is more competitive on accurate calibration, fast response and low noise.
Lilan YU
Tokyo Institute of Technology
Masaya MIYAHARA
Tokyo Institute of Technology
Akira MATSUZAWA
Tokyo Institute of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Lilan YU, Masaya MIYAHARA, Akira MATSUZAWA, "Highly Linear Open-Loop Amplifiers Using Nonlinearity Cancellation and Gain Adapting Techniques" in IEICE TRANSACTIONS on Electronics,
vol. E99-C, no. 6, pp. 641-650, June 2016, doi: 10.1587/transele.E99.C.641.
Abstract: This paper proposes two linearity enhancement techniques for open-loop amplifiers. One technique is nonlinearity cancellation. An amplifier with reversed nonlinearity is proposed to cascade with a conventional common source amplifier. The product of these two nonlinear gains demonstrates much higher linearity. It achieves a SFDR of 71 dB when differential output range is 600 mV. Compared with the conventional common source amplifier, about 24 dB improvement is achieved. Another proposed technique is gain adapting. An input amplitude detector utilizing second order nonlinearity is combined with a source-degenerated amplifier. It can adjust the gain automatically according to the input amplitude, and compensate the gain compression when the input amplitude becomes larger. A SFDR of 69 dB is realized when the differential output range is 600 mV. An improvement of 23 dB is achieved after gain is adapted. Furthermore, mismatch calibration for the two proposed linearity enhancement techniques is investigated. Finally, comparison between two proposed amplifiers is introduced. The amplifier with nonlinearity cancellation has advantage in large signal range while the amplifier utilizing gain adapting is more competitive on accurate calibration, fast response and low noise.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E99.C.641/_p
Copy
@ARTICLE{e99-c_6_641,
author={Lilan YU, Masaya MIYAHARA, Akira MATSUZAWA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Highly Linear Open-Loop Amplifiers Using Nonlinearity Cancellation and Gain Adapting Techniques},
year={2016},
volume={E99-C},
number={6},
pages={641-650},
abstract={This paper proposes two linearity enhancement techniques for open-loop amplifiers. One technique is nonlinearity cancellation. An amplifier with reversed nonlinearity is proposed to cascade with a conventional common source amplifier. The product of these two nonlinear gains demonstrates much higher linearity. It achieves a SFDR of 71 dB when differential output range is 600 mV. Compared with the conventional common source amplifier, about 24 dB improvement is achieved. Another proposed technique is gain adapting. An input amplitude detector utilizing second order nonlinearity is combined with a source-degenerated amplifier. It can adjust the gain automatically according to the input amplitude, and compensate the gain compression when the input amplitude becomes larger. A SFDR of 69 dB is realized when the differential output range is 600 mV. An improvement of 23 dB is achieved after gain is adapted. Furthermore, mismatch calibration for the two proposed linearity enhancement techniques is investigated. Finally, comparison between two proposed amplifiers is introduced. The amplifier with nonlinearity cancellation has advantage in large signal range while the amplifier utilizing gain adapting is more competitive on accurate calibration, fast response and low noise.},
keywords={},
doi={10.1587/transele.E99.C.641},
ISSN={1745-1353},
month={June},}
Copy
TY - JOUR
TI - Highly Linear Open-Loop Amplifiers Using Nonlinearity Cancellation and Gain Adapting Techniques
T2 - IEICE TRANSACTIONS on Electronics
SP - 641
EP - 650
AU - Lilan YU
AU - Masaya MIYAHARA
AU - Akira MATSUZAWA
PY - 2016
DO - 10.1587/transele.E99.C.641
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E99-C
IS - 6
JA - IEICE TRANSACTIONS on Electronics
Y1 - June 2016
AB - This paper proposes two linearity enhancement techniques for open-loop amplifiers. One technique is nonlinearity cancellation. An amplifier with reversed nonlinearity is proposed to cascade with a conventional common source amplifier. The product of these two nonlinear gains demonstrates much higher linearity. It achieves a SFDR of 71 dB when differential output range is 600 mV. Compared with the conventional common source amplifier, about 24 dB improvement is achieved. Another proposed technique is gain adapting. An input amplitude detector utilizing second order nonlinearity is combined with a source-degenerated amplifier. It can adjust the gain automatically according to the input amplitude, and compensate the gain compression when the input amplitude becomes larger. A SFDR of 69 dB is realized when the differential output range is 600 mV. An improvement of 23 dB is achieved after gain is adapted. Furthermore, mismatch calibration for the two proposed linearity enhancement techniques is investigated. Finally, comparison between two proposed amplifiers is introduced. The amplifier with nonlinearity cancellation has advantage in large signal range while the amplifier utilizing gain adapting is more competitive on accurate calibration, fast response and low noise.
ER -