In a CDMA non-linear interference canceller, a generated replica of an interference signal is multiplied by a positive number smaller than unity, which is called cancellation moderating factor (CMF), to prevent interference enhancement due to inaccurate replica subtraction. In this paper, two CMF controlling schemes applicable to a multistage parallel interference canceller with multi-antenna (spatial diversity) reception are proposed. They control CMF by using the mean square error of the complex channel gain or by using the ratio of the estimated power of each interference signal to remaining interference signals' power, in order to mitigate the replica subtraction error due to inaccurate channel estimation. The performance of the proposed schemes are evaluated by computer simulations assuming an asynchronous uplink single chip-rate variable spreading factor DS-CDMA system. The simulation results show that the proposed schemes with higher order diversity reception improve the bit error rate (BER) performance compared with a conventional scheme considering the tentative decision error or fixed CMF settings. Their performance improvement is by 0.1-0.9 dB in terms of the required Eb/N0 at an average BER of 10-5 over exponentially decaying 5-path Rayleigh distributed channels when the number of receiving antennas is 6.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kazuto YANO, Shoichi HIROSE, Susumu YOSHIDA, "Cancellation Moderating Factor Control for DS-CDMA Non-linear Interference Canceller with Antenna Diversity Reception" in IEICE TRANSACTIONS on Fundamentals,
vol. E88-A, no. 7, pp. 1921-1930, July 2005, doi: 10.1093/ietfec/e88-a.7.1921.
Abstract: In a CDMA non-linear interference canceller, a generated replica of an interference signal is multiplied by a positive number smaller than unity, which is called cancellation moderating factor (CMF), to prevent interference enhancement due to inaccurate replica subtraction. In this paper, two CMF controlling schemes applicable to a multistage parallel interference canceller with multi-antenna (spatial diversity) reception are proposed. They control CMF by using the mean square error of the complex channel gain or by using the ratio of the estimated power of each interference signal to remaining interference signals' power, in order to mitigate the replica subtraction error due to inaccurate channel estimation. The performance of the proposed schemes are evaluated by computer simulations assuming an asynchronous uplink single chip-rate variable spreading factor DS-CDMA system. The simulation results show that the proposed schemes with higher order diversity reception improve the bit error rate (BER) performance compared with a conventional scheme considering the tentative decision error or fixed CMF settings. Their performance improvement is by 0.1-0.9 dB in terms of the required Eb/N0 at an average BER of 10-5 over exponentially decaying 5-path Rayleigh distributed channels when the number of receiving antennas is 6.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e88-a.7.1921/_p
Copy
@ARTICLE{e88-a_7_1921,
author={Kazuto YANO, Shoichi HIROSE, Susumu YOSHIDA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Cancellation Moderating Factor Control for DS-CDMA Non-linear Interference Canceller with Antenna Diversity Reception},
year={2005},
volume={E88-A},
number={7},
pages={1921-1930},
abstract={In a CDMA non-linear interference canceller, a generated replica of an interference signal is multiplied by a positive number smaller than unity, which is called cancellation moderating factor (CMF), to prevent interference enhancement due to inaccurate replica subtraction. In this paper, two CMF controlling schemes applicable to a multistage parallel interference canceller with multi-antenna (spatial diversity) reception are proposed. They control CMF by using the mean square error of the complex channel gain or by using the ratio of the estimated power of each interference signal to remaining interference signals' power, in order to mitigate the replica subtraction error due to inaccurate channel estimation. The performance of the proposed schemes are evaluated by computer simulations assuming an asynchronous uplink single chip-rate variable spreading factor DS-CDMA system. The simulation results show that the proposed schemes with higher order diversity reception improve the bit error rate (BER) performance compared with a conventional scheme considering the tentative decision error or fixed CMF settings. Their performance improvement is by 0.1-0.9 dB in terms of the required Eb/N0 at an average BER of 10-5 over exponentially decaying 5-path Rayleigh distributed channels when the number of receiving antennas is 6.},
keywords={},
doi={10.1093/ietfec/e88-a.7.1921},
ISSN={},
month={July},}
Copy
TY - JOUR
TI - Cancellation Moderating Factor Control for DS-CDMA Non-linear Interference Canceller with Antenna Diversity Reception
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1921
EP - 1930
AU - Kazuto YANO
AU - Shoichi HIROSE
AU - Susumu YOSHIDA
PY - 2005
DO - 10.1093/ietfec/e88-a.7.1921
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E88-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2005
AB - In a CDMA non-linear interference canceller, a generated replica of an interference signal is multiplied by a positive number smaller than unity, which is called cancellation moderating factor (CMF), to prevent interference enhancement due to inaccurate replica subtraction. In this paper, two CMF controlling schemes applicable to a multistage parallel interference canceller with multi-antenna (spatial diversity) reception are proposed. They control CMF by using the mean square error of the complex channel gain or by using the ratio of the estimated power of each interference signal to remaining interference signals' power, in order to mitigate the replica subtraction error due to inaccurate channel estimation. The performance of the proposed schemes are evaluated by computer simulations assuming an asynchronous uplink single chip-rate variable spreading factor DS-CDMA system. The simulation results show that the proposed schemes with higher order diversity reception improve the bit error rate (BER) performance compared with a conventional scheme considering the tentative decision error or fixed CMF settings. Their performance improvement is by 0.1-0.9 dB in terms of the required Eb/N0 at an average BER of 10-5 over exponentially decaying 5-path Rayleigh distributed channels when the number of receiving antennas is 6.
ER -