Electric fishes generate an AC electric field around themselves by the electric organ in the tail. Spatial distortion of the field by nearby objects is detected by an electroreceptor array located an over the body surface to localize the object electrically when other senses such as vision and mechanosense are useless. Each fish has its own 'frequency band' for its electric organ discharges, and jamming of the electrolocation system occurs when two fish with similar discharge frequencies encounter. To avoid janmming, the fish shift their discharge frequencies in appropriate directions. A computational algorithm for this electrical behavior and its neuronal implementation by the brain have been discovered. The design features of the system, however, are rather complex for this simple behavior and cannot be readily explained by functional optimization processes during evolution. To gain insights into the origin of the design features, two independently evolved electric fish species which perform the same behavior are compared. Complex features of the neuronal computation may be explained by the evolutionary history of neuronal elements.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Masashi KAWASAKI, "Jamming Avoidance Responses in Weakly Electric Fishes: A Biological View of Signal Processing" in IEICE TRANSACTIONS on Fundamentals,
vol. E80-A, no. 6, pp. 943-950, June 1997, doi: .
Abstract: Electric fishes generate an AC electric field around themselves by the electric organ in the tail. Spatial distortion of the field by nearby objects is detected by an electroreceptor array located an over the body surface to localize the object electrically when other senses such as vision and mechanosense are useless. Each fish has its own 'frequency band' for its electric organ discharges, and jamming of the electrolocation system occurs when two fish with similar discharge frequencies encounter. To avoid janmming, the fish shift their discharge frequencies in appropriate directions. A computational algorithm for this electrical behavior and its neuronal implementation by the brain have been discovered. The design features of the system, however, are rather complex for this simple behavior and cannot be readily explained by functional optimization processes during evolution. To gain insights into the origin of the design features, two independently evolved electric fish species which perform the same behavior are compared. Complex features of the neuronal computation may be explained by the evolutionary history of neuronal elements.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e80-a_6_943/_p
Copy
@ARTICLE{e80-a_6_943,
author={Masashi KAWASAKI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Jamming Avoidance Responses in Weakly Electric Fishes: A Biological View of Signal Processing},
year={1997},
volume={E80-A},
number={6},
pages={943-950},
abstract={Electric fishes generate an AC electric field around themselves by the electric organ in the tail. Spatial distortion of the field by nearby objects is detected by an electroreceptor array located an over the body surface to localize the object electrically when other senses such as vision and mechanosense are useless. Each fish has its own 'frequency band' for its electric organ discharges, and jamming of the electrolocation system occurs when two fish with similar discharge frequencies encounter. To avoid janmming, the fish shift their discharge frequencies in appropriate directions. A computational algorithm for this electrical behavior and its neuronal implementation by the brain have been discovered. The design features of the system, however, are rather complex for this simple behavior and cannot be readily explained by functional optimization processes during evolution. To gain insights into the origin of the design features, two independently evolved electric fish species which perform the same behavior are compared. Complex features of the neuronal computation may be explained by the evolutionary history of neuronal elements.},
keywords={},
doi={},
ISSN={},
month={June},}
Copy
TY - JOUR
TI - Jamming Avoidance Responses in Weakly Electric Fishes: A Biological View of Signal Processing
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 943
EP - 950
AU - Masashi KAWASAKI
PY - 1997
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E80-A
IS - 6
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - June 1997
AB - Electric fishes generate an AC electric field around themselves by the electric organ in the tail. Spatial distortion of the field by nearby objects is detected by an electroreceptor array located an over the body surface to localize the object electrically when other senses such as vision and mechanosense are useless. Each fish has its own 'frequency band' for its electric organ discharges, and jamming of the electrolocation system occurs when two fish with similar discharge frequencies encounter. To avoid janmming, the fish shift their discharge frequencies in appropriate directions. A computational algorithm for this electrical behavior and its neuronal implementation by the brain have been discovered. The design features of the system, however, are rather complex for this simple behavior and cannot be readily explained by functional optimization processes during evolution. To gain insights into the origin of the design features, two independently evolved electric fish species which perform the same behavior are compared. Complex features of the neuronal computation may be explained by the evolutionary history of neuronal elements.
ER -