This paper proposes a scalable multiecho cancellation system based on multiple autonomic and distributed echo canceler units. The proposed system does not have any common control section. Distributed control sections are equipped with in multiple echo cancelers operating autonomically. Necessary information is transferred from one unit to the next one. When the number of echoes to be canceled is changed, the necessary number of echo canceler units, each of which may be realized on a single chip, are simply plugged in or unplugged. The proposed system also provides fast convergence thanks to the novel coefficient location algorithm which consists of flat-delay estimation and constrained tap-position control. The input signal is evaluated at each tap to determine when to terminate flat-delay estimation. The number of exchanged taps is selected larger in flat-delay estimation than in constrained tap-position control. The convergence time with a colored-signal input is reduced by approximately 50% over STWQ, and 80% over full-tap NLMS algorithm. With a real speech input, the proposed system cancels the echo by about 20 dB. Tap-positions have been shown to be controlled correctly.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Akihiko SUGIYAMA, Kenji ANZAI, Hiroshi SATO, Akihiro HIRANO, "Cancellation of Multiple Echoes by Multiple Autonomic and Distributed Echo Canceler Units" in IEICE TRANSACTIONS on Fundamentals,
vol. E81-A, no. 11, pp. 2361-2369, November 1998, doi: .
Abstract: This paper proposes a scalable multiecho cancellation system based on multiple autonomic and distributed echo canceler units. The proposed system does not have any common control section. Distributed control sections are equipped with in multiple echo cancelers operating autonomically. Necessary information is transferred from one unit to the next one. When the number of echoes to be canceled is changed, the necessary number of echo canceler units, each of which may be realized on a single chip, are simply plugged in or unplugged. The proposed system also provides fast convergence thanks to the novel coefficient location algorithm which consists of flat-delay estimation and constrained tap-position control. The input signal is evaluated at each tap to determine when to terminate flat-delay estimation. The number of exchanged taps is selected larger in flat-delay estimation than in constrained tap-position control. The convergence time with a colored-signal input is reduced by approximately 50% over STWQ, and 80% over full-tap NLMS algorithm. With a real speech input, the proposed system cancels the echo by about 20 dB. Tap-positions have been shown to be controlled correctly.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e81-a_11_2361/_p
Copy
@ARTICLE{e81-a_11_2361,
author={Akihiko SUGIYAMA, Kenji ANZAI, Hiroshi SATO, Akihiro HIRANO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Cancellation of Multiple Echoes by Multiple Autonomic and Distributed Echo Canceler Units},
year={1998},
volume={E81-A},
number={11},
pages={2361-2369},
abstract={This paper proposes a scalable multiecho cancellation system based on multiple autonomic and distributed echo canceler units. The proposed system does not have any common control section. Distributed control sections are equipped with in multiple echo cancelers operating autonomically. Necessary information is transferred from one unit to the next one. When the number of echoes to be canceled is changed, the necessary number of echo canceler units, each of which may be realized on a single chip, are simply plugged in or unplugged. The proposed system also provides fast convergence thanks to the novel coefficient location algorithm which consists of flat-delay estimation and constrained tap-position control. The input signal is evaluated at each tap to determine when to terminate flat-delay estimation. The number of exchanged taps is selected larger in flat-delay estimation than in constrained tap-position control. The convergence time with a colored-signal input is reduced by approximately 50% over STWQ, and 80% over full-tap NLMS algorithm. With a real speech input, the proposed system cancels the echo by about 20 dB. Tap-positions have been shown to be controlled correctly.},
keywords={},
doi={},
ISSN={},
month={November},}
Copy
TY - JOUR
TI - Cancellation of Multiple Echoes by Multiple Autonomic and Distributed Echo Canceler Units
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2361
EP - 2369
AU - Akihiko SUGIYAMA
AU - Kenji ANZAI
AU - Hiroshi SATO
AU - Akihiro HIRANO
PY - 1998
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E81-A
IS - 11
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - November 1998
AB - This paper proposes a scalable multiecho cancellation system based on multiple autonomic and distributed echo canceler units. The proposed system does not have any common control section. Distributed control sections are equipped with in multiple echo cancelers operating autonomically. Necessary information is transferred from one unit to the next one. When the number of echoes to be canceled is changed, the necessary number of echo canceler units, each of which may be realized on a single chip, are simply plugged in or unplugged. The proposed system also provides fast convergence thanks to the novel coefficient location algorithm which consists of flat-delay estimation and constrained tap-position control. The input signal is evaluated at each tap to determine when to terminate flat-delay estimation. The number of exchanged taps is selected larger in flat-delay estimation than in constrained tap-position control. The convergence time with a colored-signal input is reduced by approximately 50% over STWQ, and 80% over full-tap NLMS algorithm. With a real speech input, the proposed system cancels the echo by about 20 dB. Tap-positions have been shown to be controlled correctly.
ER -