The search functionality is under construction.

Keyword Search Result

[Keyword] algorithm(2125hit)

1-20hit(2125hit)

  • Channel Pruning via Improved Grey Wolf Optimizer Pruner Open Access

    Xueying WANG  Yuan HUANG  Xin LONG  Ziji MA  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2024/03/07
      Vol:
    E107-D No:7
      Page(s):
    894-897

    In recent years, the increasing complexity of deep network structures has hindered their application in small resource constrained hardware. Therefore, we urgently need to compress and accelerate deep network models. Channel pruning is an effective method to compress deep neural networks. However, most existing channel pruning methods are prone to falling into local optima. In this paper, we propose a channel pruning method via Improved Grey Wolf Optimizer Pruner which called IGWO-Pruner to prune redundant channels of convolutional neural networks. It identifies pruning ratio of each layer by using Improved Grey Wolf algorithm, and then fine-tuning the new pruned network model. In experimental section, we evaluate the proposed method in CIFAR datasets and ILSVRC-2012 with several classical networks, including VGGNet, GoogLeNet and ResNet-18/34/56/152, and experimental results demonstrate the proposed method is able to prune a large number of redundant channels and parameters with rare performance loss.

  • Research on the Switch Migration Strategy Based on Global Optimization Open Access

    Xiao’an BAO  Shifan ZHOU  Biao WU  Xiaomei TU  Yuting JIN  Qingqi ZHANG  Na ZHANG  

     
    PAPER-Information Network

      Pubricized:
    2024/03/25
      Vol:
    E107-D No:7
      Page(s):
    825-834

    With the popularization of software defined networks, switch migration as an important network management strategy has attracted increasing attention. Most existing switch migration strategies only consider local conditions and simple load thresholds, without fully considering the overall optimization and dynamics of the network. Therefore, this article proposes a switch migration algorithm based on global optimization. This algorithm adds a load prediction module to the migration model, determines the migration controller, and uses an improved whale optimization algorithm to determine the target controller and its surrounding controller set. Based on the load status of the controller and the traffic priority of the switch to be migrated, the optimal migration switch set is determined. The experimental results show that compared to existing schemes, the algorithm proposed in this paper improves the average flow processing efficiency by 15% to 40%, reduces switch migration times, and enhances the security of the controller.

  • A VVC Dependent Quantization Optimization Based on the Parallel Viterbi Algorithm and Its FPGA Implementation Open Access

    Qinghua SHENG  Yu CHENG  Xiaofang HUANG  Changcai LAI  Xiaofeng HUANG  Haibin YIN  

     
    PAPER-Computer System

      Pubricized:
    2024/03/04
      Vol:
    E107-D No:7
      Page(s):
    797-806

    Dependent Quantization (DQ) is a new quantization tool introduced in the Versatile Video Coding (VVC) standard. While it provides better rate-distortion calculation accuracy, it also increases the computational complexity and hardware cost compared to the widely used scalar quantization. To address this issue, this paper proposes a parallel-dependent quantization hardware architecture using Verilog HDL language. The architecture preprocesses the coefficients with a scalar quantizer and a high-frequency filter, and then further segments and processes the coefficients in parallel using the Viterbi algorithm. Additionally, the weight bit width of the rate-distortion calculation is reduced to decrease the quantization cycle and computational complexity. Finally, the final quantization of the TU is determined through sequential scanning and judging of the rate-distortion cost. Experimental results show that the proposed algorithm reduces the quantization cycle by an average of 56.96% compared to VVC’s reference platform VTM, with a Bjøntegaard delta bit rate (BDBR) loss of 1.03% and 1.05% under the Low-delay P and Random Access configurations, respectively. Verification on the AMD FPGA development platform demonstrates that the hardware implementation meets the quantization requirements for 1080P@60Hz video hardware encoding.

  • A Frequency Estimation Algorithm for High Precision Monitoring of Significant Space Targets Open Access

    Ze Fu GAO  Wen Ge YANG  Yi Wen JIAO  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:7
      Page(s):
    1058-1061

    Space is becoming increasingly congested and contested, which calls for effective means to conduct effective monitoring of high-value space assets, especially in Space Situational Awareness (SSA) missions, while there are imperfections in existing methods and corresponding algorithms. To overcome such a problem, this letter proposes an algorithm for accurate Connected Element Interferometry (CEI) in SSA based on more interpolation information and iterations. Simulation results show that: (i) after iterations, the estimated asymptotic variance of the proposed method can basically achieve uniform convergence, and the ratio of it to ACRB is 1.00235 in δ0 ∈ [-0.5, 0.5], which is closer to 1 than the current best AM algorithms; (ii) In the interval of SNR ∈ [-14dB, 0dB], the estimation error of the proposed algorithm decreases significantly, which is basically comparable to CRLB (maintains at 1.236 times). The research of this letter could play a significant role in effective monitoring and high-precision tracking and measurement with significant space targets during futuristic SSA missions.

  • MuSRGM: A Genetic Algorithm-Based Dynamic Combinatorial Deep Learning Model for Software Reliability Engineering Open Access

    Ning FU  Duksan RYU  Suntae KIM  

     
    PAPER-Software Engineering

      Pubricized:
    2024/02/06
      Vol:
    E107-D No:6
      Page(s):
    761-771

    In the software testing phase, software reliability growth models (SRGMs) are commonly used to evaluate the reliability of software systems. Traditional SRGMs are restricted by their assumption of a continuous growth pattern for the failure detection rate (FDR) throughout the testing phase. However, the assumption is compromised by Change-Point phenomena, where FDR fluctuations stem from variations in testing personnel or procedural modifications, leading to reduced prediction accuracy and compromised software reliability assessments. Therefore, the objective of this study is to improve software reliability prediction using a novel approach that combines genetic algorithm (GA) and deep learning-based SRGMs to account for the Change-point phenomenon. The proposed approach uses a GA to dynamically combine activation functions from various deep learning-based SRGMs into a new mutated SRGM called MuSRGM. The MuSRGM captures the advantages of both concave and S-shaped SRGMs and is better suited to capture the change-point phenomenon during testing and more accurately reflect actual testing situations. Additionally, failure data is treated as a time series and analyzed using a combination of Long Short-Term Memory (LSTM) and Attention mechanisms. To assess the performance of MuSRGM, we conducted experiments on three distinct failure datasets. The results indicate that MuSRGM outperformed the baseline method, exhibiting low prediction error (MSE) on all three datasets. Furthermore, MuSRGM demonstrated remarkable generalization ability on these datasets, remaining unaffected by uneven data distribution. Therefore, MuSRGM represents a highly promising advanced solution that can provide increased accuracy and applicability for software reliability assessment during the testing phase.

  • Dynamic Limited Variable Step-Size Algorithm Based on the MSD Variation Cost Function Open Access

    Yufei HAN  Jiaye XIE  Yibo LI  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2023/09/11
      Vol:
    E107-A No:6
      Page(s):
    919-922

    The steady-state and convergence performances are important indicators to evaluate adaptive algorithms. The step-size affects these two important indicators directly. Many relevant scholars have also proposed some variable step-size adaptive algorithms for improving performance. However, there are still some problems in these existing variable step-size adaptive algorithms, such as the insufficient theoretical analysis, the imbalanced performance and the unachievable parameter. These problems influence the actual performance of some algorithms greatly. Therefore, we intend to further explore an inherent relationship between the key performance and the step-size in this paper. The variation of mean square deviation (MSD) is adopted as the cost function. Based on some theoretical analyses and derivations, a novel variable step-size algorithm with a dynamic limited function (DLF) was proposed. At the same time, the sufficient theoretical analysis is conducted on the weight deviation and the convergence stability. The proposed algorithm is also tested with some typical algorithms in many different environments. Both the theoretical analysis and the experimental result all have verified that the proposed algorithm equips a superior performance.

  • A Personalised Session-Based Recommender System with Sequential Updating Based on Aggregation of Item Embeddings Open Access

    Yuma NAGI  Kazushi OKAMOTO  

     
    PAPER

      Pubricized:
    2024/01/09
      Vol:
    E107-D No:5
      Page(s):
    638-649

    The study proposes a personalised session-based recommender system that embeds items by using Word2Vec and sequentially updates the session and user embeddings with the hierarchicalization and aggregation of item embeddings. To process a recommendation request, the system constructs a real-time user embedding that considers users’ general preferences and sequential behaviour to handle short-term changes in user preferences with a low computational cost. The system performance was experimentally evaluated in terms of the accuracy, diversity, and novelty of the ranking of recommended items and the training and prediction times of the system for three different datasets. The results of these evaluations were then compared with those of the five baseline systems. According to the evaluation experiment, the proposed system achieved a relatively high recommendation accuracy compared with baseline systems and the diversity and novelty scores of the proposed system did not fall below 90% for any dataset. Furthermore, the training times of the Word2Vec-based systems, including the proposed system, were shorter than those of FPMC and GRU4Rec. The evaluation results suggest that the proposed recommender system succeeds in keeping the computational cost for training low while maintaining high-level recommendation accuracy, diversity, and novelty.

  • A Multiobjective Approach for Side-Channel Based Hardware Trojan Detection Using Power Traces Open Access

    Priyadharshini MOHANRAJ  Saravanan PARAMASIVAM  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/08/23
      Vol:
    E107-A No:5
      Page(s):
    825-835

    The detection of hardware trojans has been extensively studied in the past. In this article, we propose a side-channel analysis technique that uses a wrapper-based feature selection technique for hardware trojan detection. The whale optimization algorithm is modified to carefully extract the best feature subset. The aim of the proposed technique is multiobjective: improve the accuracy and minimize the number of features. The power consumption traces measured from AES-128 trojan circuits are used as features in this experiment. The stabilizing property of the feature selection method helps to bring a mutual trade-off between the precision and recall parameters thereby minimizing the number of false negatives. The proposed hardware trojan detection scheme produces a maximum of 10.3% improvement in accuracy and reduction up to a single feature by employing the modified whale optimization technique. Thus the evaluation results conducted on various trust-hub cryptographic benchmark circuits prove to be efficient from the existing state-of-art methods.

  • Distributed Event-Triggered Stochastic Gradient-Tracking for Nonconvex Optimization Open Access

    Daichi ISHIKAWA  Naoki HAYASHI  Shigemasa TAKAI  

     
    PAPER

      Pubricized:
    2024/01/18
      Vol:
    E107-A No:5
      Page(s):
    762-769

    In this paper, we consider a distributed stochastic nonconvex optimization problem for multiagent systems. We propose a distributed stochastic gradient-tracking method with event-triggered communication. A group of agents cooperatively finds a critical point of the sum of local cost functions, which are smooth but not necessarily convex. We show that the proposed algorithm achieves a sublinear convergence rate by appropriately tuning the step size and the trigger threshold. Moreover, we show that agents can effectively solve a nonconvex optimization problem by the proposed event-triggered algorithm with less communication than by the existing time-triggered gradient-tracking algorithm. We confirm the validity of the proposed method by numerical experiments.

  • Assigning Proximity Facilities for Gatherings

    Shin-ichi NAKANO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/11/27
      Vol:
    E107-D No:3
      Page(s):
    383-385

    In this paper we study a recently proposed variant of the r-gathering problem. An r-gathering of customers C to facilities F is an assignment A of C to open facilities F' ⊂ F such that r or more customers are assigned to each open facility. (Each facility needs enough number of customers to open.) Given an opening cost op(f) for each f∈F, and a connecting cost co(c,f) for each pair of c∈C and f∈F, the cost of an r-gathering A is max{maxc∈C{co(c, A(c))}, maxf∈F'{op(f)}}. The r-gathering problem consists of finding an r-gathering having the minimum cost. Assume that F is a set of locations for emergency shelters, op(f) is the time needed to prepare a shelter f∈F, and co(c,f) is the time needed for a person c∈C to reach assigned shelter f=A(c)∈F. Then an r-gathering corresponds to an evacuation plan such that each open shelter serves r or more people, and the r-gathering problem consists of finding an evacuation plan minimizing the evacuation time span. However in a solution above some person may be assigned to a farther open shelter although it has a closer open shelter. It may be difficult for the person to accept such an assignment for an emergency situation. Therefore, Armon considered the problem with one more additional constraint, that is, each customer should be assigned to a closest open facility, and gave a 9-approximation polynomial-time algorithm for the problem. We have designed a simple 3-approximation algorithm for the problem. The running time is O(r|C||F|).

  • Best Possible Algorithms for One-Way Trading with Only the Maximum Fluctuation Ratio Available

    Hiroshi FUJIWARA  Keiji HIRAO  Hiroaki YAMAMOTO  

     
    PAPER

      Pubricized:
    2023/10/23
      Vol:
    E107-D No:3
      Page(s):
    278-285

    In Variant 4 of the one-way trading game [El-Yaniv, Fiat, Karp, and Turpin, 2001], a player has one dollar at the beginning and wants to convert it to yen only by one-way conversion. The exchange rate is guaranteed to fluctuate between m and M, and only the maximum fluctuation ratio φ = M/m is informed to the player in advance. The performance of an algorithm for this game is measured by the competitive ratio. El-Yaniv et al. derived the best possible competitive ratio over all algorithms for this game. However, it seems that the behavior of the best possible algorithm itself has not been explicitly described. In this paper we reveal the behavior of the best possible algorithm by solving a linear optimization problem. The behavior turns out to be quite different from that of the best possible algorithm for Variant 2 in which the player knows m and M in advance.

  • An Adaptive Energy-Efficient Uneven Clustering Routing Protocol for WSNs

    Mingyu LI  Jihang YIN  Yonggang XU  Gang HUA  Nian XU  

     
    PAPER-Network

      Vol:
    E107-B No:2
      Page(s):
    296-308

    Aiming at the problem of “energy hole” caused by random distribution of nodes in large-scale wireless sensor networks (WSNs), this paper proposes an adaptive energy-efficient balanced uneven clustering routing protocol (AEBUC) for WSNs. The competition radius is adaptively adjusted based on the node density and the distance from candidate cluster head (CH) to base station (BS) to achieve scale-controlled adaptive optimal clustering; in candidate CHs, the energy relative density and candidate CH relative density are comprehensively considered to achieve dynamic CH selection. In the inter-cluster communication, based on the principle of energy balance, the relay communication cost function is established and combined with the minimum spanning tree method to realize the optimized inter-cluster multi-hop routing, forming an efficient communication routing tree. The experimental results show that the protocol effectively saves network energy, significantly extends network lifetime, and better solves the “energy hole” problem.

  • Statistical-Mechanical Analysis of Adaptive Volterra Filter for Nonwhite Input Signals

    Koyo KUGIYAMA  Seiji MIYOSHI  

     
    PAPER

      Pubricized:
    2023/07/13
      Vol:
    E107-A No:1
      Page(s):
    87-95

    The Volterra filter is one of the digital filters that can describe nonlinearity. In this paper, we analyze the dynamic behaviors of an adaptive signal processing system with the Volterra filter for nonwhite input signals by a statistical-mechanical method. Assuming the self-averaging property with an infinitely long tapped-delay line, we derive simultaneous differential equations that describe the behaviors of macroscopic variables in a deterministic and closed form. We analytically solve the derived equations to reveal the effect of the nonwhiteness of the input signal on the adaptation process. The results for the second-order Volterra filter show that the nonwhiteness decreases the mean-square error (MSE) in the early stages of the adaptation process and increases the MSE in the later stages.

  • A Fully-Parallel Annealing Algorithm with Autonomous Pinning Effect Control for Various Combinatorial Optimization Problems

    Daiki OKONOGI  Satoru JIMBO  Kota ANDO  Thiem Van CHU  Jaehoon YU  Masato MOTOMURA  Kazushi KAWAMURA  

     
    PAPER

      Pubricized:
    2023/09/19
      Vol:
    E106-D No:12
      Page(s):
    1969-1978

    Annealing computation has recently attracted attention as it can efficiently solve combinatorial optimization problems using an Ising spin-glass model. Stochastic cellular automata annealing (SCA) is a promising algorithm that can realize fast spin-update by utilizing its parallel computing capability. However, in SCA, pinning effect control to suppress the spin-flip probability is essential, making escaping from local minima more difficult than serial spin-update algorithms, depending on the problem. This paper proposes a novel approach called APC-SCA (Autonomous Pinning effect Control SCA), where the pinning effect can be controlled autonomously by focusing on individual spin-flip. The evaluation results using max-cut, N-queen, and traveling salesman problems demonstrate that APC-SCA can obtain better solutions than the original SCA that uses pinning effect control pre-optimized by a grid search. Especially in solving traveling salesman problems, we confirm that the tour distance obtained by APC-SCA is up to 56.3% closer to the best-known compared to the conventional approach.

  • MITA: Multi-Input Adaptive Activation Function for Accurate Binary Neural Network Hardware

    Peiqi ZHANG  Shinya TAKAMAEDA-YAMAZAKI  

     
    PAPER

      Pubricized:
    2023/05/24
      Vol:
    E106-D No:12
      Page(s):
    2006-2014

    Binary Neural Networks (BNN) have binarized neuron and connection values so that their accelerators can be realized by extremely efficient hardware. However, there is a significant accuracy gap between BNNs and networks with wider bit-width. Conventional BNNs binarize feature maps by static globally-unified thresholds, which makes the produced bipolar image lose local details. This paper proposes a multi-input activation function to enable adaptive thresholding for binarizing feature maps: (a) At the algorithm level, instead of operating each input pixel independently, adaptive thresholding dynamically changes the threshold according to surrounding pixels of the target pixel. When optimizing weights, adaptive thresholding is equivalent to an accompanied depth-wise convolution between normal convolution and binarization. Accompanied weights in the depth-wise filters are ternarized and optimized end-to-end. (b) At the hardware level, adaptive thresholding is realized through a multi-input activation function, which is compatible with common accelerator architectures. Compact activation hardware with only one extra accumulator is devised. By equipping the proposed method on FPGA, 4.1% accuracy improvement is achieved on the original BNN with only 1.1% extra LUT resource. Compared with State-of-the-art methods, the proposed idea further increases network accuracy by 0.8% on the Cifar-10 dataset and 0.4% on the ImageNet dataset.

  • Communication-Aware Flight Algorithms for UAV-Based Delay-Tolerant Networks

    Hiroyuki ASANO  Hiraku OKADA  Chedlia BEN NAILA  Masaaki KATAYAMA  

     
    PAPER-Network

      Pubricized:
    2023/06/01
      Vol:
    E106-B No:11
      Page(s):
    1122-1132

    In this paper, a wireless communication network that uses unmanned aerial vehicles (UAVs) in the sky to transmit information between ground users is considered. We highlight a delay-tolerant network, where information is relayed in a store-and-forward fashion by establishing two types of intermittent communication links: between a UAV and a user (UAV-to-user) and between UAVs (UAV-to-UAV). Thus, a flight algorithm that controls the movement of the UAVs is crucial in achieving rapid information transmission. Our study proposes new flight algorithms that simultaneously consider the two types of communication links. In UAV-to-UAV links, the direct information transmission between two UAVs and the indirect transmission through other UAVs are considered separately. The movement of the UAVs is controlled by solving an optimization problem at certain time intervals, with a variable consideration ratio of the two types of links. In addition, we investigate not only the case where all UAVs move cooperatively but also the case where each UAV moves autonomously. Simulation results show that the proposed algorithms are effective. Moreover, they indicate the existence of an optimal consideration ratio of the two types of communication and demonstrate that our approach enables the control of frequencies of establishing the communication links. We conclude that increasing the frequency of indirect communication between UAVs improves network performance.

  • An Optimal Satellite Selection Schema in Feeder Link Mapping for High-Capacity Scenario

    Rui CHEN  Wen-nai WANG  Wei WU  

     
    PAPER-Satellite Communications

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1237-1243

    Non-Terrestrial-Network (NTN) can provide seamless and ubiquitous connectivity of massive devices. Thus, the feeder links between satellites and gateways need to provide essentially high data transmission rates. In this paper, we focus on a typical high-capacity scenario, i.e., LEO-IoT, to find an optimal satellite selection schema to maximize the capacity of feeder links. The proposed schema is able to obtain the optimal mapping among all the satellites and gateways. By comparing with maximum service time algorithm, the proposed schema can construct a more balanced and reasonable connection pattern to improve the efficiency of the gateways. Such an advantage will become more significant as the number of satellites increases.

  • Loosely-Stabilizing Algorithm on Almost Maximal Independent Set

    Rongcheng DONG  Taisuke IZUMI  Naoki KITAMURA  Yuichi SUDO  Toshimitsu MASUZAWA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/08/07
      Vol:
    E106-D No:11
      Page(s):
    1762-1771

    The maximal independent set (MIS) problem is one of the most fundamental problems in the field of distributed computing. This paper focuses on the MIS problem with unreliable communication between processes in the system. We propose a relaxed notion of MIS, named almost MIS (ALMIS), and show that the loosely-stabilizing algorithm proposed in our previous work can achieve exponentially long holding time with logarithmic convergence time and space complexity regarding ALMIS, which cannot be achieved at the same time regarding MIS in our previous work.

  • Enhancing VQE Convergence for Optimization Problems with Problem-Specific Parameterized Quantum Circuits

    Atsushi MATSUO  Yudai SUZUKI  Ikko HAMAMURA  Shigeru YAMASHITA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/08/17
      Vol:
    E106-D No:11
      Page(s):
    1772-1782

    The Variational Quantum Eigensolver (VQE) algorithm is gaining interest for its potential use in near-term quantum devices. In the VQE algorithm, parameterized quantum circuits (PQCs) are employed to prepare quantum states, which are then utilized to compute the expectation value of a given Hamiltonian. Designing efficient PQCs is crucial for improving convergence speed. In this study, we introduce problem-specific PQCs tailored for optimization problems by dynamically generating PQCs that incorporate problem constraints. This approach reduces a search space by focusing on unitary transformations that benefit the VQE algorithm, and accelerate convergence. Our experimental results demonstrate that the convergence speed of our proposed PQCs outperforms state-of-the-art PQCs, highlighting the potential of problem-specific PQCs in optimization problems.

  • Enhancing Cup-Stacking Method for Collective Communication

    Takashi YOKOTA  Kanemitsu OOTSU  Shun KOJIMA  

     
    PAPER-Computer System

      Pubricized:
    2023/08/22
      Vol:
    E106-D No:11
      Page(s):
    1808-1821

    An interconnection network is an inevitable component for constructing parallel computers. It connects computation nodes so that the nodes can communicate with each other. As a parallel computation essentially requires inter-node communication according to a parallel algorithm, the interconnection network plays an important role in terms of communication performance. This paper focuses on the collective communication that is frequently performed in parallel computation and this paper addresses the Cup-Stacking method that is proposed in our preceding work. The key issues of the method are splitting a large packet into slices, re-shaping the slice, and stacking the slices, in a genetic algorithm (GA) manner. This paper discusses extending the Cup-Stacking method by introducing additional items (genes) and proposes the extended Cup-Stacking method. Furthermore, this paper places comprehensive discussions on the drawbacks and further optimization of the method. Evaluation results reveal the effectiveness of the extended method, where the proposed method achieves at most seven percent improvement in duration time over the former Cup-Stacking method.

1-20hit(2125hit)