The search functionality is under construction.
The search functionality is under construction.

Open Access
A Personalised Session-Based Recommender System with Sequential Updating Based on Aggregation of Item Embeddings

Yuma NAGI, Kazushi OKAMOTO

  • Full Text Views

    273

  • Cite this
  • Free PDF (7MB)

Summary :

The study proposes a personalised session-based recommender system that embeds items by using Word2Vec and sequentially updates the session and user embeddings with the hierarchicalization and aggregation of item embeddings. To process a recommendation request, the system constructs a real-time user embedding that considers users’ general preferences and sequential behaviour to handle short-term changes in user preferences with a low computational cost. The system performance was experimentally evaluated in terms of the accuracy, diversity, and novelty of the ranking of recommended items and the training and prediction times of the system for three different datasets. The results of these evaluations were then compared with those of the five baseline systems. According to the evaluation experiment, the proposed system achieved a relatively high recommendation accuracy compared with baseline systems and the diversity and novelty scores of the proposed system did not fall below 90% for any dataset. Furthermore, the training times of the Word2Vec-based systems, including the proposed system, were shorter than those of FPMC and GRU4Rec. The evaluation results suggest that the proposed recommender system succeeds in keeping the computational cost for training low while maintaining high-level recommendation accuracy, diversity, and novelty.

Publication
IEICE TRANSACTIONS on Information Vol.E107-D No.5 pp.638-649
Publication Date
2024/05/01
Publicized
2024/01/09
Online ISSN
1745-1361
DOI
10.1587/transinf.2023DAP0006
Type of Manuscript
Special Section PAPER (Special Section on Data Engineering and Information Management)
Category

Authors

Yuma NAGI
  UNICORN Inc.
Kazushi OKAMOTO
  The University of Electro-Communications

Keyword