The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] information recommendation(2hit)

1-2hit
  • A Personalised Session-Based Recommender System with Sequential Updating Based on Aggregation of Item Embeddings Open Access

    Yuma NAGI  Kazushi OKAMOTO  

     
    PAPER

      Pubricized:
    2024/01/09
      Vol:
    E107-D No:5
      Page(s):
    638-649

    The study proposes a personalised session-based recommender system that embeds items by using Word2Vec and sequentially updates the session and user embeddings with the hierarchicalization and aggregation of item embeddings. To process a recommendation request, the system constructs a real-time user embedding that considers users’ general preferences and sequential behaviour to handle short-term changes in user preferences with a low computational cost. The system performance was experimentally evaluated in terms of the accuracy, diversity, and novelty of the ranking of recommended items and the training and prediction times of the system for three different datasets. The results of these evaluations were then compared with those of the five baseline systems. According to the evaluation experiment, the proposed system achieved a relatively high recommendation accuracy compared with baseline systems and the diversity and novelty scores of the proposed system did not fall below 90% for any dataset. Furthermore, the training times of the Word2Vec-based systems, including the proposed system, were shorter than those of FPMC and GRU4Rec. The evaluation results suggest that the proposed recommender system succeeds in keeping the computational cost for training low while maintaining high-level recommendation accuracy, diversity, and novelty.

  • A Low-Cost High-Performance Semantic and Physical Distance Calculation Method Based on ZIP Code

    Da LI  Yuanyuan WANG  Rikuya YAMAMOTO  Yukiko KAWAI  Kazutoshi SUMIYA  

     
    PAPER

      Pubricized:
    2022/01/13
      Vol:
    E105-D No:5
      Page(s):
    920-927

    Recently, machine learning approaches and user movement history analysis on mobile devices have attracted much attention. Generally, we need to apply text data into the word embedding tool for acquiring word vectors as the preprocessing of machine learning approaches. However, it is difficult for mobile devices to afford the huge cost of high-dimensional vector calculation. Thus, a low-cost user behavior and user movement history analysis approach should be considered. To address this issue, firstly, we convert the zip code and street house number into vectors instead of textual address information to reduce the cost of spatial vector calculation. Secondly, we propose a low-cost high-performance semantic and physical distance (real distance) calculation method that applied zip-code-based vectors. Finally, to verify the validity of our proposed method, we utilize the US zip code data to calculate both semantic and physical distances and compare their results with the previous method. The experimental results showed that our proposed method could significantly improve the performance of distance calculation and effectively control the cost to a low level.