The search functionality is under construction.

IEICE TRANSACTIONS on Fundamentals

Multiple Ant Colonies Algorithm Based on Colony Level Interactions

Hidenori KAWAMURA, Masahito YAMAMOTO, Keiji SUZUKI, Azuma OHUCHI

  • Full Text Views

    0

  • Cite this

Summary :

Recently, researchers in various fields have shown interest in the behavior of creatures from the viewpoint of adaptiveness and flexibility. Ants, known as social insects, exhibit collective behavior in performing tasks that can not be carried out by an individual ant. In ant colonies, chemical substances, called pheromones, are used as a way to communicate important information on global behavior. For example, ants looking for food lay the way back to their nest with a specific type of pheromone. Other ants can follow the pheromone trail and find their way to baits efficiently. In 1991, Colorni et al. proposed the ant algorithm for Traveling Salesman Problems (TSPs) by using the analogy of such foraging behavior and pheromone communication. In the ant algorithm, there is a colony consisting of many simple ant agents that continuously visit TSP cities with opinions to prefer subtours connecting near cities and they lay strong pheromones. The ants completing their tours lay pheromones of various intensities with passed subtours according to distances. Namely, subtours in TSP tourns that have the possibility of being better tend to have strong pheromones, so the ant agents specify good regions in the search space by using this positive feedback mechanism. In this paper, we propose a multiple ant colonies algorithm that has been extended from the ant algorithm. This algorithm has several ant colonies for solving a TSP, while the original has only a single ant colony. Moreover, two kinds of pheromone effects, positive and negative pheromone effects, are introduced as the colony-level interactions. As a result of colony-level interactions, the colonies can exchange good schemata for solving a problem and can maintain their own variation in the search process. The proposed algorithm shows better performance than the original algorithm with almost the same agent strategy used in both algorithms except for the introduction of colony-level interactions.

Publication
IEICE TRANSACTIONS on Fundamentals Vol.E83-A No.2 pp.371-379
Publication Date
2000/02/25
Publicized
Online ISSN
DOI
Type of Manuscript
PAPER
Category
Algorithms and Data Structures

Authors

Keyword