The c-Secure CRT code is a collusion-secure fingerprinting code whose code length is reduced by using the Chinese Remainder Theorem. The tracing algorithm for the c-secure CRT code drops its performance of traitor tracing when random errors are added to the codewords. In this paper, we show two approaches to enhance random-error-resilience to the tracing algorithm of the c-secure CRT code. The first approach is introducing thresholds for the distinction of the detected part of the embedded data called detected blocks. We propose a method to derive appropriate values of the thresholds on an assumption that the tracer can estimate the random error rate. This modification extends the capability of traitor tracing to the attacks in which the alteration rate of the detected blocks is not fixed to 0.5. The second approach is extending the scope of the search for the detected blocks. With numerical results by computer simulations, we confirmed an impressive improvement of random-error-resilience of a c-secure CRT code.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Katsunari YOSHIOKA, Tsutomu MATSUMOTO, "Random-Error Resilience of a Short Collusion-Secure Code" in IEICE TRANSACTIONS on Fundamentals,
vol. E86-A, no. 5, pp. 1147-1155, May 2003, doi: .
Abstract: The c-Secure CRT code is a collusion-secure fingerprinting code whose code length is reduced by using the Chinese Remainder Theorem. The tracing algorithm for the c-secure CRT code drops its performance of traitor tracing when random errors are added to the codewords. In this paper, we show two approaches to enhance random-error-resilience to the tracing algorithm of the c-secure CRT code. The first approach is introducing thresholds for the distinction of the detected part of the embedded data called detected blocks. We propose a method to derive appropriate values of the thresholds on an assumption that the tracer can estimate the random error rate. This modification extends the capability of traitor tracing to the attacks in which the alteration rate of the detected blocks is not fixed to 0.5. The second approach is extending the scope of the search for the detected blocks. With numerical results by computer simulations, we confirmed an impressive improvement of random-error-resilience of a c-secure CRT code.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e86-a_5_1147/_p
Copy
@ARTICLE{e86-a_5_1147,
author={Katsunari YOSHIOKA, Tsutomu MATSUMOTO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Random-Error Resilience of a Short Collusion-Secure Code},
year={2003},
volume={E86-A},
number={5},
pages={1147-1155},
abstract={The c-Secure CRT code is a collusion-secure fingerprinting code whose code length is reduced by using the Chinese Remainder Theorem. The tracing algorithm for the c-secure CRT code drops its performance of traitor tracing when random errors are added to the codewords. In this paper, we show two approaches to enhance random-error-resilience to the tracing algorithm of the c-secure CRT code. The first approach is introducing thresholds for the distinction of the detected part of the embedded data called detected blocks. We propose a method to derive appropriate values of the thresholds on an assumption that the tracer can estimate the random error rate. This modification extends the capability of traitor tracing to the attacks in which the alteration rate of the detected blocks is not fixed to 0.5. The second approach is extending the scope of the search for the detected blocks. With numerical results by computer simulations, we confirmed an impressive improvement of random-error-resilience of a c-secure CRT code.},
keywords={},
doi={},
ISSN={},
month={May},}
Copy
TY - JOUR
TI - Random-Error Resilience of a Short Collusion-Secure Code
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1147
EP - 1155
AU - Katsunari YOSHIOKA
AU - Tsutomu MATSUMOTO
PY - 2003
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E86-A
IS - 5
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - May 2003
AB - The c-Secure CRT code is a collusion-secure fingerprinting code whose code length is reduced by using the Chinese Remainder Theorem. The tracing algorithm for the c-secure CRT code drops its performance of traitor tracing when random errors are added to the codewords. In this paper, we show two approaches to enhance random-error-resilience to the tracing algorithm of the c-secure CRT code. The first approach is introducing thresholds for the distinction of the detected part of the embedded data called detected blocks. We propose a method to derive appropriate values of the thresholds on an assumption that the tracer can estimate the random error rate. This modification extends the capability of traitor tracing to the attacks in which the alteration rate of the detected blocks is not fixed to 0.5. The second approach is extending the scope of the search for the detected blocks. With numerical results by computer simulations, we confirmed an impressive improvement of random-error-resilience of a c-secure CRT code.
ER -