A novel interference reduction method, transmit power and window control (TPWC), is proposed to enhance the system capacity in the downlink of code division multiple access (CDMA) cellular packet systems. TPWC measures the propagation conditions and calculates the required instantaneous transmit power between a base station (BS) and a mobile station (MS). Then, TPWC sends packets only during a transmit time-window, in which the packets can be sent with less power than a predetermined threshold. TPWC reduces the average transmit power at the cost of an extra transmission delay at the BS. Computer simulations show that TPWC enhances the system capacity by two-fold in a CDMA cellular packet system when each MS has a loading ratio of 0.5 and an average delay allowance of 5 ms for the unit packet length of 1 ms. Furthermore, this paper proposes a multi-link packet transmission (MLPT) scheme in order to reduce the delay caused by TPWC. When an MS is at the cell edge, packets are distributed by MLPT to multiple BSs, from which packets are sent to the MS; thus, the transmission delay can be reduced by utilizing the transmit windows of each BS.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hiroyuki KAWAI, Shinzo OHKUBO, Toru OTSU, Hirohito SUDA, Yasushi YAMAO, "Transmit Power and Window Control to Reduce Inter-User Interference in CDMA Cellular Packet Systems" in IEICE TRANSACTIONS on Fundamentals,
vol. E86-A, no. 7, pp. 1698-1706, July 2003, doi: .
Abstract: A novel interference reduction method, transmit power and window control (TPWC), is proposed to enhance the system capacity in the downlink of code division multiple access (CDMA) cellular packet systems. TPWC measures the propagation conditions and calculates the required instantaneous transmit power between a base station (BS) and a mobile station (MS). Then, TPWC sends packets only during a transmit time-window, in which the packets can be sent with less power than a predetermined threshold. TPWC reduces the average transmit power at the cost of an extra transmission delay at the BS. Computer simulations show that TPWC enhances the system capacity by two-fold in a CDMA cellular packet system when each MS has a loading ratio of 0.5 and an average delay allowance of 5 ms for the unit packet length of 1 ms. Furthermore, this paper proposes a multi-link packet transmission (MLPT) scheme in order to reduce the delay caused by TPWC. When an MS is at the cell edge, packets are distributed by MLPT to multiple BSs, from which packets are sent to the MS; thus, the transmission delay can be reduced by utilizing the transmit windows of each BS.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e86-a_7_1698/_p
Copy
@ARTICLE{e86-a_7_1698,
author={Hiroyuki KAWAI, Shinzo OHKUBO, Toru OTSU, Hirohito SUDA, Yasushi YAMAO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Transmit Power and Window Control to Reduce Inter-User Interference in CDMA Cellular Packet Systems},
year={2003},
volume={E86-A},
number={7},
pages={1698-1706},
abstract={A novel interference reduction method, transmit power and window control (TPWC), is proposed to enhance the system capacity in the downlink of code division multiple access (CDMA) cellular packet systems. TPWC measures the propagation conditions and calculates the required instantaneous transmit power between a base station (BS) and a mobile station (MS). Then, TPWC sends packets only during a transmit time-window, in which the packets can be sent with less power than a predetermined threshold. TPWC reduces the average transmit power at the cost of an extra transmission delay at the BS. Computer simulations show that TPWC enhances the system capacity by two-fold in a CDMA cellular packet system when each MS has a loading ratio of 0.5 and an average delay allowance of 5 ms for the unit packet length of 1 ms. Furthermore, this paper proposes a multi-link packet transmission (MLPT) scheme in order to reduce the delay caused by TPWC. When an MS is at the cell edge, packets are distributed by MLPT to multiple BSs, from which packets are sent to the MS; thus, the transmission delay can be reduced by utilizing the transmit windows of each BS.},
keywords={},
doi={},
ISSN={},
month={July},}
Copy
TY - JOUR
TI - Transmit Power and Window Control to Reduce Inter-User Interference in CDMA Cellular Packet Systems
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1698
EP - 1706
AU - Hiroyuki KAWAI
AU - Shinzo OHKUBO
AU - Toru OTSU
AU - Hirohito SUDA
AU - Yasushi YAMAO
PY - 2003
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E86-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2003
AB - A novel interference reduction method, transmit power and window control (TPWC), is proposed to enhance the system capacity in the downlink of code division multiple access (CDMA) cellular packet systems. TPWC measures the propagation conditions and calculates the required instantaneous transmit power between a base station (BS) and a mobile station (MS). Then, TPWC sends packets only during a transmit time-window, in which the packets can be sent with less power than a predetermined threshold. TPWC reduces the average transmit power at the cost of an extra transmission delay at the BS. Computer simulations show that TPWC enhances the system capacity by two-fold in a CDMA cellular packet system when each MS has a loading ratio of 0.5 and an average delay allowance of 5 ms for the unit packet length of 1 ms. Furthermore, this paper proposes a multi-link packet transmission (MLPT) scheme in order to reduce the delay caused by TPWC. When an MS is at the cell edge, packets are distributed by MLPT to multiple BSs, from which packets are sent to the MS; thus, the transmission delay can be reduced by utilizing the transmit windows of each BS.
ER -