The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] transmit power control(32hit)

1-20hit(32hit)

  • An Interference Mitigation Technique for Dynamic TDD Based Frequency-Separated Small Cell Network in LTE-Advanced Based Future Wireless Access

    Hiroki TAKAHASHI  Kazunari YOKOMAKURA  Kimihiko IMAMURA  

     
    PAPER

      Vol:
    E98-B No:8
      Page(s):
    1436-1446

    This paper investigates an interference mitigation technique for dynamic time division duplex (TDD) based frequency-separated small cell networks in future long term evolution advanced (LTE-A) based wireless access systems. In dynamic TDD, cross-link interference, i.e. evolved node B (eNB)-eNB interference and user equipment (UE)-UE interference, also occur, and eNB-eNB interference in particular significantly degrades the uplink (UL) transmission performance. In order to alleviate the impacts of eNB-eNB interference and to obtain high traffic adaptation gain, we investigate a transmit power control (TPC) based interference mitigation (IM) scheme. In TPC-IM, time-domain subframes are divided into two subframe sets according to whether the cross-link interference can occur or not, and different TPC parameters are applied depending on the type of subframe. To improve of UL signal to interference plus noise power ratio (SINR) in the subframe set with the potential to occur eNB-eNB interference, there are two approaches of UL power boosting and downlink (DL) power reduction. We investigate the adequate combination of these two approaches to avoid an impact of DL performance degradation and increase of UE power consumption. Moreover, we further investigate a combined scheme of the TPC-IM and a cell clustering interference mitigation (CCIM) to avoid the significantly strong cross-link interference from the neighbouring cells. Computer simulation confirms that the proposed TPC-IM scheme can achieve 4.4% and 26.2% gain in the average DL and UL throughputs, respectively, compared to the case without any IM schemes on dynamic TDD. Moreover, when the CCIM is applied to the TPC-IM scheme, 11.6% and 40.3% gain can be achieved in the average DL and UL throughputs, respectively.

  • A Combined Power Control and Resource Allocation Scheme for D2D Communication Underlaying an LTE-Advanced System

    Jaheon GU  Sueng Jae BAE  Syed Faraz HASAN  Min Young CHUNG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:10
      Page(s):
    2683-2692

    The underlaying architecture of Device-to-device (D2D) communication supports direct communication between users by reusing the radio resources of the LTE-A system. Despite the co-channel interference between the conventional cellular user equipment (CUE) and the D2D communication user equipment (DUE), LTE-A system can improve the combined data rate of CUEs and DUEs through effective transmit power control and resource allocation schemes. In this paper, we propose a novel mechanism, which combines the resource allocation scheme with the transmit power control scheme to maximize the overall data rate (defined as the sum-rate in the paper). We perform system-level simulations to determine the effectiveness of the proposed mechanism in terms of increasing the sum-rate. The simulation result shows that the proposed mechanism can improve the sum-rate in an underlaying LTE-A system that supports D2D communication.

  • Achievable Capacity of Closed/Open-Access Cognitive Radio Systems Coexisting with a Macro Cellular Systems

    Hiromasa FUJII  Hiroki HARADA  Shunji MIURA  Hidetoshi KAYAMA  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1190-1197

    We provide a theoretical analysis of the capacity achievable by an open/closed-access cognitive radio system, where the system uses spectrum resources primarily allocated to a macro cellular system. For spectrum sharing, we consider two methods based on listen-before-talk and adaptive transmit power control principles. Moreover, outdoor and indoor installations of CRS stations are investigated. We have also taken the effect of antenna heights into consideration. Numerical results reveal the capacities possible from CRS base stations installed within the coverage area of the macro cell system. We show numerical examples that compare the capacities achievable by open-access and closed access cognitive radio systems.

  • Novel Transmit Power Control for Energy Efficiency in IEEE 802.11 WLAN

    Seungwoo JEON  Jihoon LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:1
      Page(s):
    325-328

    This letter proposes a novel TPC scheme that increases the energy efficiency of IEEE 802.11 WLAN users. It can determine whether to access the channel and with what level of transmit power given the current channel condition by comparing the expected energy efficiency to an adaptive threshold.

  • The Joint Transmit Power Control and Frequency Band Rearrangement Scheme for PB/MC-CDMA Systems

    Kyujin LEE  Yan SUN  Kyesan LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:2
      Page(s):
    583-586

    In this paper, we investigate the resource and power allocation schemes of partial block multi-carrier code division multiple access (PB/MC-CDMA) systems. In our proposed scheme, we manage transmit power depending on each user's channel state information (CSI). The objective is to maximize the average bit error ratio (BER) performance with minimal influence from the received signal-to-interference ratio (SIR), both of which are closely related to transmit power. To obtain additional performance improvement, our frequency band rearrangement scheme follows the transmit power control (TPC) process. We evaluate the performance of the proposed scheme using simulations. The results show that the proposed system provides superior performance compared to those of conventional systems.

  • Joint Control of Transmit Power and Frame Size for Energy-Optimized Data Transfer in Wireless Sensor Networks

    Ram Kishore REDDY  Swades DE  Hari Mohan GUPTA  

     
    PAPER

      Vol:
    E93-B No:8
      Page(s):
    2043-2052

    Energy efficiency is one of the most important attributes in sensor network protocols. In sensor nodes, communication related activities consume the major share of battery energy. Therefore, judicious choice of transmit power and frame size are very important to maximize the energy efficiency and hence the lifetime of nodes. While there have been a few recent studies on transmit power control implementation in sensor nodes, no report has thoroughly investigated transmit power control and the effect of its interplay with frame size on nodal energy saving. In this paper, we report our implementation of automatic transmit power control in wireless sensor nodes based on open loop parameters -- namely, link layer frame size, and close loop parameters -- namely, number of consecutive positive acknowledgments and receive signal strength. Our extensive indoor and outdoor experimental results show that, for low to moderate transmission distances, transmit power control has the energy saving benefit, and the larger the frame size the more the energy saving. At a higher transmission distance or at a more error-prone communication scenario, transmit power control as well as a large frame size are detrimental to energy saving performance. The results from this study could be useful in deciding power control strategies and optimum frame length.

  • Spectrum Sharing by Adaptive Transmit Power Control for Low Priority Systems and Achievable Capacity

    Hiromasa FUJII  Hitoshi YOSHINO  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E92-B No:8
      Page(s):
    2568-2576

    A spectrum sharing method is proposed for systems that share the same frequency band or adjacent bands with services that have different priorities. The proposed method adaptively controls transmission power according to information provided by the high-priority system receivers. We give the theoretical capacities achieved by low-priority systems when the proposed method and a conventional method (constant transmit power) are applied. Numerical results confirm that the proposed method attains 1.5-2 times larger capacity than the conventional method.

  • Multi-Hop Link Capacity of Multi-Route Multi-Hop MRC Diversity for a Virtual Cellular Network

    Imane DAOU  Eisuke KUDOH  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E91-B No:5
      Page(s):
    1568-1574

    In virtual cellular network (VCN), proposed for high-speed mobile communications, the signal transmitted from a mobile terminal is received by some wireless ports distributed in each virtual cell and relayed to the central port that acts as a gateway to the core network. In this paper, we apply the multi-route MHMRC diversity in order to decrease the transmit power and increase the multi-hop link capacity. The transmit power, the interference power and the link capacity are evaluated for DS-CDMA multi-hop VCN by computer simulation. The multi-route MHMRC diversity can be applied to not only DS-CDMA but also other access schemes (i.e. MC-CDMA, OFDM, etc.).

  • Analysis of Polarization Diversity Gain at Base Station in W-CDMA System

    Masaru FUKUSHIGE  Tetsurou IMAI  

     
    PAPER-Propagation

      Vol:
    E90-B No:9
      Page(s):
    2360-2368

    There have been many theoretical and experimental investigations on polarization diversity reception characteristics at base stations. The diversity gain was evaluated based on the distribution of the instantaneous received power in these investigations. The mainstream mobile communication systems are shifting to standardized IMT-2000 systems and the W-CDMA system is one of them. The effect using base station polarization diversity in W-CDMA must be evaluated by considering not only antenna diversity, but also RAKE reception/path diversity. Furthermore, Transmit Power Control (TPC) is applied to overcome the near-far problem of mobile units that maintain a fixed reception power level in W-CDMA systems. Therefore, traditional diversity gain cannot be used as an evaluation metric. This paper proposes a theoretical analysis method for diversity gain using base station polarization diversity in W-CDMA. The evaluation model used for theoretical analysis is verified based on a comparison with the experimental results and the analytical results of the practical diversity gain are clarified.

  • Downlink Packet Transmission Control Based on Soft Handoff Status in CDMA Cellular Packet Networks

    Abubaker KHUMSI  Kazuo MORI  Katsuhiro NAITO  Hideo KOBAYASHI  Hamid AGHVAMI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:5
      Page(s):
    1252-1256

    In this letter we investigated the packet transmission control in downlink CDMA cellular systems. The downlink packet transmission control scheme based on the soft handoff status was proposed to enhance the system performance. The proposed scheme controls the downlink packet transmissions by employing a transmission window which is individually resolved to each mobile station according to its propagation condition and soft handoff status. Computer simulation shows that compared with the conventional scheme the proposed scheme improved the delay performance and fairness of service in packet reception.

  • Transmit Power Efficiency of Multi-Hop MRC Diversity for a Virtual Cellular Network

    Imane DAOU  Eisuke KUDOH  Fumiyuki ADACHI  

     
    LETTER

      Vol:
    E88-B No:9
      Page(s):
    3643-3648

    In virtual cellular network (VCN), proposed for high-speed packet mobile communications, the signal transmitted from a mobile terminal is received by wireless ports distributed in each virtual cell and relayed to the central port that acts as a gateway to the core network. In this letter, we apply the multi-hop maximal ratio combining (MHMRC) diversity and propose the route modification algorithm in order to improve transmit power efficiency degradation caused by the carrier frequency difference between the control and the data communication channels for VCN. The transmit power efficiency and the distribution of the number of hops are evaluated by computer simulation for a VCN.

  • Application of Random Transmit Power Control to DS-CDMA/TDD Packet Mobile Radio

    ZhiSen WANG  Eisuke KUDOH  Fumiyuki ADACHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:10
      Page(s):
    3144-3149

    A random transmit power control (TPC) is applied to DS-CDMA/TDD packet mobile radio, which controls the transmit power so as to intentionally vary the received signal power in order to obtain the large capture effect. The uplink capacity with the random TPC in a frequency-selective fading channel is evaluated by computer simulation. The simulation results show that the random TPC provides larger link capacity than slow TPC.

  • Impact of Shadowing Correlation on Spectrum Efficiency of a Power Controlled Cellular System

    Kentarou SAWA  Eisuke KUDOH  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:7
      Page(s):
    1964-1969

    Independent shadowing losses are often assumed for computing the frequency reuse distance of cellular mobile communication systems. However, shadowing losses may be partially correlated since the obstacles surrounding a mobile station block similarly the desired signal and interfering signals. We investigate, by computer simulation, how the shadowing correlation impacts the frequency reuse distance of a power controlled cellular system. It is pointed out that the shadowing correlation impacts the frequency reuse distance differently for the uplink and downlink.

  • A Study on Optimum Weights for Delay Transmit Diversity for DS-CDMA in a Frequency Non-selective Fading Channel

    Akihito KATOH  Eisuke KUDOH  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:4
      Page(s):
    838-848

    In this paper, we study DS-CDMA delay transmit diversity that transmits the weighted and time-delayed versions of the same signal from multiple antennas in a frequency non-selective fading environment. At a receiver, one receive antenna is used and the received delayed signals are coherently combined by Rake receiver. The set of optimum antenna weights for maximizing the received signal-to-noise power ratio (SNR) is theoretically derived to reveal that the optimum solution is to transmit only from the best antenna that has the maximum channel gain. The bit error rate (BER) performance improvement over conventional delay transmit diversity is theoretically analyzed and confirmed by computer simulations. The combined effect of transmit diversity and transmit power control (TPC) is also evaluated. Furthermore, the impact of fading decorrelation between the transmit and receive channels is also investigated for both the time division duplex (TDD) and frequency division duplex (FDD) schemes.

  • A Weighted Delay Transmit Diversity System Combined with Antenna Diversity Reception for DS-CDMA Mobile Radio

    Akihito KATO  Eisuke KUDOH  Fumiyuki ADACHI  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:7
      Page(s):
    2211-2215

    In this paper, we study a delay transmit diversity system combined with antenna diversity reception that transmits the time-delayed and weighted versions of the same signal from multiple antennas. At a receiver, multiple receive antennas are used and all delayed signals received on multiple antennas are coherently combined by a Rake receiver. The set of optimum antenna weights for maximizing the received signal-to-noise power ratio (SNR) after Rake combining is theoretically analyzed to show that the optimum solution is to transmit only from the best antenna that has the maximum equivalent channel gain seen after Rake combining. The bit error rate (BER) performance is theoretically analyzed and evaluated by computer simulation. The combined effect of transmit diversity and transmit power control (TPC) is also investigated.

  • Uplink Link Capacity of DS-CDMA Packet Mobile Communications with Rake Combining and Transmit Power Control

    ZhiSen WANG  Eisuke KUDOH  Fumiyuki ADACHI  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:7
      Page(s):
    2203-2206

    Without transmit power control (TPC) and Rake combining, the uplink capacity of a direct sequence code division multiple access (DS-CDMA) packet mobile communication system significantly degrades due to the near-far problem and multipath fading. In this letter, assuming a single cell system with an interference-limited channel, the impact of the joint use of Rake combining and TPC on the uplink capacity is evaluated by computer simulation. Slow TPC is found to give a link capacity larger than fast TPC. This is because, with slow TPC, the received signal power variations due to fading remain intact and this results in a larger capture effect.

  • Transmit Power and Window Control to Reduce Inter-User Interference in CDMA Cellular Packet Systems

    Hiroyuki KAWAI  Shinzo OHKUBO  Toru OTSU  Hirohito SUDA  Yasushi YAMAO  

     
    PAPER

      Vol:
    E86-A No:7
      Page(s):
    1698-1706

    A novel interference reduction method, transmit power and window control (TPWC), is proposed to enhance the system capacity in the downlink of code division multiple access (CDMA) cellular packet systems. TPWC measures the propagation conditions and calculates the required instantaneous transmit power between a base station (BS) and a mobile station (MS). Then, TPWC sends packets only during a transmit time-window, in which the packets can be sent with less power than a predetermined threshold. TPWC reduces the average transmit power at the cost of an extra transmission delay at the BS. Computer simulations show that TPWC enhances the system capacity by two-fold in a CDMA cellular packet system when each MS has a loading ratio of 0.5 and an average delay allowance of 5 ms for the unit packet length of 1 ms. Furthermore, this paper proposes a multi-link packet transmission (MLPT) scheme in order to reduce the delay caused by TPWC. When an MS is at the cell edge, packets are distributed by MLPT to multiple BSs, from which packets are sent to the MS; thus, the transmission delay can be reduced by utilizing the transmit windows of each BS.

  • Effect of Transmit Power Limitation in Power Controlled DS-CDMA

    Akihito KATOH  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:2
      Page(s):
    757-768

    In DS-CDMA mobile communications systems, transmit power control (TPC) is an indispensable technique on the reverse (mobile-to-base) links to minimize the received signal power variations produced by multipath fading, shadowing, and distance dependent path loss. However, a large transmit power is sometimes required with TPC. This is an undesirable burden for a mobile station because the transmit power amplifier must have a fairly wide range of linearity. Furthermore, in the case of cellular systems, a large interference is produced to other cells, thereby reducing reverse link capacity. In this paper, we study the effect of the mobile transmitter power limitation on the transmission performance and the required transmit power that is directly related to the other cell interference.

  • Modeling of DS-CDMA Transmit Power Control in a Fast Fading Channel with Antenna Diversity

    Akihito KATOH  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:2
      Page(s):
    769-776

    In DS-CDMA mobile radio communications systems, transmit power control (TPC) is indispensable to regulate the variations in the received signal power produced by multipath fading. However, a practical TPC raises and lowers the mobile transmit power only at discrete time instants (the TPC rate is on the order of 1-2 kHz) and by a finite step size of the order of 1 dB. Therefore, TPC cannot completely compensate the received signal power variations and hence, the transmission performance degrades in a fast fading channel. The objective of this paper is to understand how TPC acts in a fast fading channel with antenna diversity reception and, based on this understanding, to model the TPC operation.

  • Field Experiments on Pilot Symbol-Assisted Coherent Multistage Interference Canceller in DS-CDMA Reverse Link

    Kenichi HIGUCHI  Koichi OKAWA  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    181-190

    This paper presents the results of field experiments on the pilot symbol assisted (PSA) coherent multistage interference canceller (COMSIC) receiver in the direct sequence code division multiple access (DS-CDMA) reverse link. The implemented COMSIC receiver comprising three cancellation stages employs PSA channel estimation and replica generation of multiple access interference (MAI) of other users. The experimental results demonstrate that the COMSIC receiver associated with antenna diversity reception and fast transmission power control (TPC) exhibits effectiveness in suppressing severe MAI in actual multipath fading channels. The transmission power of a mobile station (MS) when the COMSIC receiver is employed at a base station (BS) is reduced by approximately 2.0 and 4.0 dB compared to that with the matched filter (MF)-based Rake receiver when the ratios of the target signal energy per bit-to-interference power spectrum density ratio (Eb/I0) of the desired user to the target user are Δtarget= -6 and -9 dB, respectively. Furthermore, for the COMSIC receiver, the transmission power of a MS at the average bit error rate (BER) of 10-3 with antenna diversity is decreased by approximately 7.5 and 11 dB compared to that without antenna diversity when the Δtarget values are -6 and -9 dB, respectively.

1-20hit(32hit)