Outlier detection in a data set is very important in performing proper data mining. In this paper, we propose a method for efficiently detecting outliers by performing cluster analysis using the DS algorithm improved from the k-means algorithm. This method is simpler to detect outliers than traditional methods, and these detected outliers can quantitatively indicate “the degree of outlier”. Using this method, we detect abnormal trading days from OHLCs for S&P500 and FTSA, which are typical and world-wide stock indexes, from the beginning of 2005 to the end of 2015. They are defined as non-steady trading days, and the conditions for becoming the non-steady markets are mined as new knowledge. Applying the mined knowledge to OHLCs from the beginning of 2016 to the end of 2018, we can predict the non-steady trading days during that period. By verifying the predicted content, we show the fact that the appropriate knowledge has been successfully mined and show the effectiveness of the outlier detection method proposed in this paper. Furthermore, we mutually reference and comparatively analyze the results of applying this method to multiple stock indexes. This analyzes possible to visualize when and where social and economic impacts occur and how they propagate through the earth. This is one of the new applications using this method.
Hideaki IWATA
Wakayama University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hideaki IWATA, "Non-Steady Trading Day Detection Based on Stock Index Time-Series Information" in IEICE TRANSACTIONS on Fundamentals,
vol. E103-A, no. 6, pp. 821-828, June 2020, doi: 10.1587/transfun.2019EAP1151.
Abstract: Outlier detection in a data set is very important in performing proper data mining. In this paper, we propose a method for efficiently detecting outliers by performing cluster analysis using the DS algorithm improved from the k-means algorithm. This method is simpler to detect outliers than traditional methods, and these detected outliers can quantitatively indicate “the degree of outlier”. Using this method, we detect abnormal trading days from OHLCs for S&P500 and FTSA, which are typical and world-wide stock indexes, from the beginning of 2005 to the end of 2015. They are defined as non-steady trading days, and the conditions for becoming the non-steady markets are mined as new knowledge. Applying the mined knowledge to OHLCs from the beginning of 2016 to the end of 2018, we can predict the non-steady trading days during that period. By verifying the predicted content, we show the fact that the appropriate knowledge has been successfully mined and show the effectiveness of the outlier detection method proposed in this paper. Furthermore, we mutually reference and comparatively analyze the results of applying this method to multiple stock indexes. This analyzes possible to visualize when and where social and economic impacts occur and how they propagate through the earth. This is one of the new applications using this method.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2019EAP1151/_p
Copy
@ARTICLE{e103-a_6_821,
author={Hideaki IWATA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Non-Steady Trading Day Detection Based on Stock Index Time-Series Information},
year={2020},
volume={E103-A},
number={6},
pages={821-828},
abstract={Outlier detection in a data set is very important in performing proper data mining. In this paper, we propose a method for efficiently detecting outliers by performing cluster analysis using the DS algorithm improved from the k-means algorithm. This method is simpler to detect outliers than traditional methods, and these detected outliers can quantitatively indicate “the degree of outlier”. Using this method, we detect abnormal trading days from OHLCs for S&P500 and FTSA, which are typical and world-wide stock indexes, from the beginning of 2005 to the end of 2015. They are defined as non-steady trading days, and the conditions for becoming the non-steady markets are mined as new knowledge. Applying the mined knowledge to OHLCs from the beginning of 2016 to the end of 2018, we can predict the non-steady trading days during that period. By verifying the predicted content, we show the fact that the appropriate knowledge has been successfully mined and show the effectiveness of the outlier detection method proposed in this paper. Furthermore, we mutually reference and comparatively analyze the results of applying this method to multiple stock indexes. This analyzes possible to visualize when and where social and economic impacts occur and how they propagate through the earth. This is one of the new applications using this method.},
keywords={},
doi={10.1587/transfun.2019EAP1151},
ISSN={1745-1337},
month={June},}
Copy
TY - JOUR
TI - Non-Steady Trading Day Detection Based on Stock Index Time-Series Information
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 821
EP - 828
AU - Hideaki IWATA
PY - 2020
DO - 10.1587/transfun.2019EAP1151
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E103-A
IS - 6
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - June 2020
AB - Outlier detection in a data set is very important in performing proper data mining. In this paper, we propose a method for efficiently detecting outliers by performing cluster analysis using the DS algorithm improved from the k-means algorithm. This method is simpler to detect outliers than traditional methods, and these detected outliers can quantitatively indicate “the degree of outlier”. Using this method, we detect abnormal trading days from OHLCs for S&P500 and FTSA, which are typical and world-wide stock indexes, from the beginning of 2005 to the end of 2015. They are defined as non-steady trading days, and the conditions for becoming the non-steady markets are mined as new knowledge. Applying the mined knowledge to OHLCs from the beginning of 2016 to the end of 2018, we can predict the non-steady trading days during that period. By verifying the predicted content, we show the fact that the appropriate knowledge has been successfully mined and show the effectiveness of the outlier detection method proposed in this paper. Furthermore, we mutually reference and comparatively analyze the results of applying this method to multiple stock indexes. This analyzes possible to visualize when and where social and economic impacts occur and how they propagate through the earth. This is one of the new applications using this method.
ER -