Zhenhai TAN Yun YANG Xiaoman WANG Fayez ALQAHTANI
Chenrui CHANG Tongwei LU Feng YAO
Takuma TSUCHIDA Rikuho MIYATA Hironori WASHIZAKI Kensuke SUMOTO Nobukazu YOSHIOKA Yoshiaki FUKAZAWA
Shoichi HIROSE Kazuhiko MINEMATSU
Toshimitsu USHIO
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Qingping YU Yuan SUN You ZHANG Longye WANG Xingwang LI
Qiuyu XU Kanghui ZHAO Tao LU Zhongyuan WANG Ruimin HU
Lei Zhang Xi-Lin Guo Guang Han Di-Hui Zeng
Meng HUANG Honglei WEI
Yang LIU Jialong WEI Shujian ZHAO Wenhua XIE Niankuan CHEN Jie LI Xin CHEN Kaixuan YANG Yongwei LI Zhen ZHAO
Ngoc-Son DUONG Lan-Nhi VU THI Sinh-Cong LAM Phuong-Dung CHU THI Thai-Mai DINH THI
Lan XIE Qiang WANG Yongqiang JI Yu GU Gaozheng XU Zheng ZHU Yuxing WANG Yuwei LI
Jihui LIU Hui ZHANG Wei SU Rong LUO
Shota NAKAYAMA Koichi KOBAYASHI Yuh YAMASHITA
Wataru NAKAMURA Kenta TAKAHASHI
Chunfeng FU Renjie JIN Longjiang QU Zijian ZHOU
Masaki KOBAYASHI
Shinichi NISHIZAWA Masahiro MATSUDA Shinji KIMURA
Keisuke FUKADA Tatsuhiko SHIRAI Nozomu TOGAWA
Yuta NAGAHAMA Tetsuya MANABE
Baoxian Wang Ze Gao Hongbin Xu Shoupeng Qin Zhao Tan Xuchao Shi
Maki TSUKAHARA Yusaku HARADA Haruka HIRATA Daiki MIYAHARA Yang LI Yuko HARA-AZUMI Kazuo SAKIYAMA
Guijie LIN Jianxiao XIE Zejun ZHANG
Hiroki FURUE Yasuhiko IKEMATSU
Longye WANG Lingguo KONG Xiaoli ZENG Qingping YU
Ayaka FUJITA Mashiho MUKAIDA Tadahiro AZETSU Noriaki SUETAKE
Xingan SHA Masao YANAGISAWA Youhua SHI
Jiqian XU Lijin FANG Qiankun ZHAO Yingcai WAN Yue GAO Huaizhen WANG
Sei TAKANO Mitsuji MUNEYASU Soh YOSHIDA Akira ASANO Nanae DEWAKE Nobuo YOSHINARI Keiichi UCHIDA
Kohei DOI Takeshi SUGAWARA
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Mingjie LIU Chunyang WANG Jian GONG Ming TAN Changlin ZHOU
Hironori UCHIKAWA Manabu HAGIWARA
Atsuko MIYAJI Tatsuhiro YAMATSUKI Tomoka TAKAHASHI Ping-Lun WANG Tomoaki MIMOTO
Kazuya TANIGUCHI Satoshi TAYU Atsushi TAKAHASHI Mathieu MOLONGO Makoto MINAMI Katsuya NISHIOKA
Masayuki SHIMODA Atsushi TAKAHASHI
Yuya Ichikawa Naoko Misawa Chihiro Matsui Ken Takeuchi
Katsutoshi OTSUKA Kazuhito ITO
Rei UEDA Tsunato NAKAI Kota YOSHIDA Takeshi FUJINO
Motonari OHTSUKA Takahiro ISHIMARU Yuta TSUKIE Shingo KUKITA Kohtaro WATANABE
Iori KODAMA Tetsuya KOJIMA
Yusuke MATSUOKA
Yosuke SUGIURA Ryota NOGUCHI Tetsuya SHIMAMURA
Tadashi WADAYAMA Ayano NAKAI-KASAI
Li Cheng Huaixing Wang
Beining ZHANG Xile ZHANG Qin WANG Guan GUI Lin SHAN
Sicheng LIU Kaiyu WANG Haichuan YANG Tao ZHENG Zhenyu LEI Meng JIA Shangce GAO
Kun ZHOU Zejun ZHANG Xu TANG Wen XU Jianxiao XIE Changbing TANG
Soh YOSHIDA Nozomi YATOH Mitsuji MUNEYASU
Ryo YOSHIDA Soh YOSHIDA Mitsuji MUNEYASU
Nichika YUGE Hiroyuki ISHIHARA Morikazu NAKAMURA Takayuki NAKACHI
Ling ZHU Takayuki NAKACHI Bai ZHANG Yitu WANG
Toshiyuki MIYAMOTO Hiroki AKAMATSU
Yanchao LIU Xina CHENG Takeshi IKENAGA
Kengo HASHIMOTO Ken-ichi IWATA
Shota TOYOOKA Yoshinobu KAJIKAWA
Kyohei SUDO Keisuke HARA Masayuki TEZUKA Yusuke YOSHIDA
Hiroshi FUJISAKI
Tota SUKO Manabu KOBAYASHI
Akira KAMATSUKA Koki KAZAMA Takahiro YOSHIDA
Tingyuan NIE Jingjing NIE Kun ZHAO
Xinyu TIAN Hongyu HAN Limengnan ZHOU Hanzhou WU
Shibo DONG Haotian LI Yifei YANG Jiatianyi YU Zhenyu LEI Shangce GAO
Kengo NAKATA Daisuke MIYASHITA Jun DEGUCHI Ryuichi FUJIMOTO
Jie REN Minglin LIU Lisheng LI Shuai LI Mu FANG Wenbin LIU Yang LIU Haidong YU Shidong ZHANG
Ken NAKAMURA Takayuki NOZAKI
Yun LIANG Degui YAO Yang GAO Kaihua JIANG
Guanqun SHEN Kaikai CHI Osama ALFARRAJ Amr TOLBA
Zewei HE Zixuan CHEN Guizhong FU Yangming ZHENG Zhe-Ming LU
Bowen ZHANG Chang ZHANG Di YAO Xin ZHANG
Zhihao LI Ruihu LI Chaofeng GUAN Liangdong LU Hao SONG Qiang FU
Kenji UEHARA Kunihiko HIRAISHI
David CLARINO Shohei KURODA Shigeru YAMASHITA
Qi QI Zi TENG Hongmei HUO Ming XU Bing BAI
Ling Wang Zhongqiang Luo
Zongxiang YI Qiuxia XU
Donghoon CHANG Deukjo HONG Jinkeon KANG
Xiaowu LI Wei CUI Runxin LI Lianyin JIA Jinguo YOU
Zhang HUAGUO Xu WENJIE Li LIANGLIANG Liao HONGSHU
Seonkyu KIM Myoungsu SHIN Hanbeom SHIN Insung KIM Sunyeop KIM Donggeun KWON Deukjo HONG Jaechul SUNG Seokhie HONG
Manabu HAGIWARA
Xin JIN Ningmei YU Yaoyang ZHOU Bowen HUANG Zihao YU Xusheng ZHAN Huizhe WANG Sa WANG Yungang BAO
Simultaneous multithreading (SMT) technology improves CPU throughput, but also causes unpredictable performance fluctuations for co-running workloads. Although recent major SMT processors have adopted some techniques to promote hardware support for quality-of-service (QoS), achieving both precise performance guarantees and high throughput on SMT architectures is still a challenging open problem. In this paper, we demonstrate through some comprehensive investigations on a cycle-accurate simulator that not only almost all in-core resources suffer from severe contention as workloads vary but also there is a non-linear relationship between performance and available quotas of resources. We consider these observations as the fundamental reason leading to the challenging problem above. Thus, we introduce QoSMT, a novel hardware scheme that leverages a closed-loop controlling mechanism consisting of detection, prediction and adjustment to enforce precise performance guarantees for specific targets, e.g. achieving 85%, 90% or 95% of the performance of a workload running alone respectively. We implement a prototype on GEM5 simulator. Experimental results show that the average control error is only 1.4%, 0.5% and 3.6%.
Outlier detection in a data set is very important in performing proper data mining. In this paper, we propose a method for efficiently detecting outliers by performing cluster analysis using the DS algorithm improved from the k-means algorithm. This method is simpler to detect outliers than traditional methods, and these detected outliers can quantitatively indicate “the degree of outlier”. Using this method, we detect abnormal trading days from OHLCs for S&P500 and FTSA, which are typical and world-wide stock indexes, from the beginning of 2005 to the end of 2015. They are defined as non-steady trading days, and the conditions for becoming the non-steady markets are mined as new knowledge. Applying the mined knowledge to OHLCs from the beginning of 2016 to the end of 2018, we can predict the non-steady trading days during that period. By verifying the predicted content, we show the fact that the appropriate knowledge has been successfully mined and show the effectiveness of the outlier detection method proposed in this paper. Furthermore, we mutually reference and comparatively analyze the results of applying this method to multiple stock indexes. This analyzes possible to visualize when and where social and economic impacts occur and how they propagate through the earth. This is one of the new applications using this method.
Takahiro OTA Hiroyoshi MORITA Akiko MANADA
This paper proposes two variants of improved Compression by Substring Enumeration (CSE) with a finite alphabet. In previous studies on CSE, an encoder utilizes inequalities which evaluate the number of occurrences of a substring or a minimal forbidden word (MFW) to be encoded. The inequalities are derived from a contingency table including the number of occurrences of a substring or an MFW. Moreover, codeword length of a substring and an MFW grows with the difference between the upper and lower bounds deduced from the inequalities, however the lower bound is not tight. Therefore, we derive a new tight lower bound based on the contingency table and consequently propose a new CSE algorithm using the new inequality. We also propose a new encoding order of substrings and MFWs based on a sorted contingency table such that both its row and column marginal total are sorted in descending order instead of a lexicographical order used in previous studies. We then propose a new CSE algorithm which is the first proposed CSE algorithm using the new encoding order. Experimental results show that compression ratios of all files of the Calgary corpus in the proposed algorithms are better than those of a previous study on CSE with a finite alphabet. Moreover, compression ratios under the second proposed CSE get better than or equal to that under a well-known compressor for 11 files amongst 14 files in the corpus.
Wei JHANG Shiaw-Wu CHEN Ann-Chen CHANG
In this letter, an efficient hybrid direction-of-arrival (DOA) estimation scheme is devised for massive uniform rectangular array. In this scheme, the DOA estimator based on a two-dimensional (2D) discrete Fourier transform is first applied to acquire coarse initial DOA estimates for single data snapshot. Then, the fine DOA is accurately estimated through using the iterative search estimator within a very small region. Meanwhile, a Nyström-based method is utilized to correctly compute the required noise-subspace projection matrix, avoiding the direct computation of full-dimensional sample correlation matrix and its eigenvalue decomposition. Therefore, the proposed scheme not only can estimate DOA, but also save computational cost, especially in massive antenna arrays scenarios. Simulation results are included to demonstrate the effectiveness of the proposed hybrid estimate scheme.
An offline sensor gain-phase errors calibration method for a linear array using a source in unknown location is proposed. The proposed method is realized through three steps. First, based on the observed covariance matrix, we construct a function related to direction, and it is proved that when the function takes the minimum value, the corresponding value should be the direction of the calibration source. Second, the direction of calibration source is estimated by locating the valley from the constructed function. Third, the gain-phase errors are obtained based on the estimated direction. The proposed method offers a number of advantages. First, the accurate direction measurement of the calibration source is not required. Second, only one calibration source needs to be arranged. Third, it does not require an iterative procedure or a two-dimensional (2D) spectral search. Fourth, the method is applicable to linear arrays, not only to uniform linear arrays (ULAs). Numerical simulations are presented to verify the efficacy of the proposed method.
Pei LI Haiyang ZHANG Fan CHU Wei WU Juan ZHAO Baoyun WANG
This paper proposes a sampling strategy for bandlimited graph signals over perturbed graph, in which we assume the edge between any pair of the nodes may be deleted randomly. Considering the mismatch between the true graph and the presumed graph, we derive the mean square error (MSE) of the reconstructed bandlimited graph signals. To minimize the MSE, we propose a greedy-based algorithm to obtain the optimal sampling set. Furthermore, we use Neumann series to avoid the pseudo-inverse computing. An efficient algorithm with low-complexity is thus proposed. Finally, numerical results show the superiority of our proposed algorithms over the other existing algorithms.
Tailin NIU Xi CHEN Longjiang QU Chao LI
(m+k,m)-functions with good cryptographic properties when 1≤k<m play an important role in several block ciphers. In this paper, based on the method introduced by Carlet et al. in 2018, we construct infinite families of (m+k,m)-functions with low differential uniformity by constructing a class of pairwise disjoint special subsets in $gf_2^k$. Such class of subsets Ui are chosen to generate multisets such that all elements in $gf_2^k$ appears as many times as possible in each of these multisets. We construct explicitly such kind of special subsets by linearized polynomials, and provide differentially Δ-uniform (m+k,m)-functions with Δ<2k+1,k≤m-2. Specifically when k=m-2, the differential uniformity of our functions are lower than the function constructed by Carlet et al. The constructed functions provide more choices for the design of Feistel ciphers.
Zhi LIU Mengjun DONG Mengmeng ZHANG
In the upcoming video coding standard VVC (Versatile Video Coding, H.266), a new coding block structure named quadtree nested multi-type trees (MTT) has been proposed. Compared with the quadtree structure defined in HEVC (High Efficiency Video Coding), the partition structure of MTT can achieve better coding performance. Since the splitting scheme of a CU (Coding Unit) need to be calculated recursively, the computational complexity is significantly increased. To reduce computational complexity as well as maintain compression performance, a fast multi-type tree decision algorithm is proposed. The application of binary and ternary tree in horizontal or vertical direction is found to be closely related to the characteristics of CU in this paper, and a metric named pixel difference of sub-blocks (SBPD) is defined to measure the characteristics of CU in different splitting type. By comparing the SBPD in horizontal and vertical sub-blocks, the selection of binary and ternary tree can be decided in advance, so as to skip some redundant splitting modes. Experimental results show that compared with the original reference software VTM 4.0, the average time saving of the proposed algorithm is 27% and the BD-rate is only increased by 0.55%.
This letter studies the physical layer security of an unmanned aerial vehicle (UAV)-enabled multicasting system, where a UAV serves as a mobile transmitter to send a common confidential message to a group of legitimate users under the existence of multiple eavesdroppers. The worst situation in which each eavesdropper can wiretap all legitimate users is considered. We seek to maximize the average secrecy rate by jointly optimizing the UAV's transmit power and trajectory over a given flight period. The resulting optimization problem is nonconvex and intractable to solve. To circumvent the nonconvexity, we propose an iterative algorithm to approximate the solution based on the alternating optimization and successive convex approximation methods. Simulation results validate the convergence and effectiveness of our proposed algorithm.
So Ryoung PARK Iickho SONG Seokho YOON
A unified decision scheme for the classification and localization of cable faults is proposed based on a two-step procedure. Having basis in the time domain reflectometry (TDR), the proposed scheme is capable of determining not only the locations but also types of faults in a cable without an excessive additional computational burden compared to other TDR-based schemes. Results from simulation and experiments with measured real data demonstrate that the proposed scheme exhibits a higher rate of correct decision than the conventional schemes in localizing and classifying faults over a wide range of the location of faults.